
 WOLFRAM WHITE PAPER

Heterogeneous Programming with
the Wolfram Language

Introduction
The past few years have seen an increase in the number of cores on both the CPU and GPU.
Despite this, developers have not been able to fully utilize the parallel frameworks. Since de-
velopers began to target the CPU and GPU frameworks, they realized that some algorithms map
nicely onto the CPU while others work best with the GPU. As a result, much research has been
done to develop algorithms that exploit both the CPU’s and GPU’s capabilities. The research
culminated in a heterogeneous school of thought, with both the CPU and GPU collaborating to
maximize the accuracy and speed of the user’s program. In such methodology, the GPU is
utilized in parts where it excels, as is the CPU. Yet while heterogeneous algorithms are ideal, no
system has exposed built-in access to both the CPU and the GPU with a concise and easy-to-use
syntax like the Wolfram Language, which makes heterogeneous computing easy.

By providing an environment where programs can be run on either the CPU or GPU, the Wolfram
Language realizes the heterogeneous message. Coupled with its comprehensive import/export
support, symbolic computation, extensive field coverage, state-of-the-art visualization features,
platform neutrality, and ease of use, the Wolfram Language is ideal for heterogeneous algorithm
development.

This white paper is divided as follows: first, we briefly discuss what the Wolfram Language is and
why you should use it for heterogeneous computing, then we look at some of the Wolfram
Language’s multicore and GPU features, develop a dozen applications along the way, and finally
discuss why the Wolfram Language has an advantage over other systems.

A Brief Introduction to the Wolfram Language
The Wolfram Language is a flexible programming language with a wide range of symbolic and
numeric computational capabilities, high-quality visualizations, built-in application area pack-
ages, and a range of immediate deployment options. Combined with integration of dynamic
libraries, automatic interface construction, and C code generation, the Wolfram Language is the
most sophisticated build-to-deploy environment on the market today.

The Wolfram Language has the ability to perform computations on the GPU and thus facilitates
heterogeneous computing. For developers, this new integration means native access to the
Wolfram Language’s computing abilities—creating hybrid algorithms that combine the CPU and
the GPU. Following are some key features of the Wolfram Language.

Free-Form Linguistic Input
The Wolfram Language’s free-form linguistic input is the ability to interpret English text as
Wolfram Language code. It is a breakthrough in usability, making development intuitive and
simple.

Multiparadigm Programming Language
The Wolfram Language is a highly declarative functional language that also enables you to use
several different programming paradigms, such as procedural and rule-based programming.
Programmers can choose their own style for writing code with minimal effort. Along with compre-
hensive documentation and resources, the Wolfram Language's flexibility greatly reduces the
cost of entry for new users.

Symbolic-Numeric Hybrid System
The principle behind the Wolfram Language is full integration of symbolic and numeric comput-
ing capabilities. Through its full automation and preprocessing mechanisms, users reap the
power of a hybrid computing system without needing knowledge of specific methodologies and
algorithms.

Heterogeneous Programming with the Wolfram Language | 1

Scientific and Technical Area Coverage
The Wolfram Language provides thousands of built-in functions and packages that cover a broad
range of scientific and technical computing areas, such as statistics, control systems, data
visualization, and image processing. All functions are carefully designed and tightly integrated
with the core system.

Unified Data Representation
At the core of the Wolfram Language is the foundational idea that everything—data, programs,
formulas, graphics, documents—can be represented as symbolic entities, called expressions.
This unified representation makes Wolfram Language functions extremely flexible, streamlined,
and consistent.

Data Access and Connectivity
The Wolfram Language natively supports hundreds of formats for importing and exporting, as
well as real-time access to data from the Wolfram Knowledgebase. It also provides APIs for
accessing many programming languages and databases, such as C/C++, Java, .NET, MySQL, and
Oracle.

Full-Featured, Unified Development Environment
Through its unique interface and integrated features for computation, development, and deploy-
ment, the Wolfram Language provides a streamlined workflow. Wolfram Research also offers
Wolfram Workbench, a state-of-the-art integrated development engine based on the Eclipse
platform.

High-Performance Computing
The Wolfram Language has built-in support for multicore systems, utilizing all cores on the
system for optimal performance. Many functions automatically utilize the power of multicore
processors, and built-in parallel constructs make high-performance programming easy.

Platform-Independent Deployment Options
Through its interactive documents, Wolfram CDF Player, browser plugins, and cloud connectivity,
the Wolfram Language provides a wide range of options for deployment. Built-in code generation
functionality can be used to create standalone programs for independent distribution.

Scalability
Wolfram Research’s gridMathematica allows Wolfram Language programs to be parallelized on
many machines in cluster or grid configuration. Also available is webMathematica, which allows
Wolfram Language programs to be run on a web server.

2 | Heterogeneous Programming with the Wolfram Language

Motivations for Heterogeneous Computing in the Wolfram
Language
Over the past few years, multicore systems have transitioned from being found only on specialty

devices to commodity devices. With CPUs routinely having 2, 4, or 8 cores, software has not

been able to exploit the now-common multicore features.

The GPU has also transitioned from being used only for graphics and gaming to a device capable

of performing general computation. The GPU has quickly surpassed the CPU in terms of perfor-

mance, with a modest GPU able to perform over 20 times more computations per second than a

CPU. This is because of the GPU architecture, which reduces cache and RAM in favor of arith-

metic logical units (ALU).

Unlike Moore’s law for the CPU—which states that the number of transistors that can be placed

inexpensively on an integrated circuit doubles approximately every 18 months—GPUs have been

quadrupling the number of transistors every 18 months. With an architecture that facilitates the

addition of more ALUs, the GPU has quickly surpassed the CPU in terms of raw computational

power, making the GPU ideal for certain forms of computation.

Yet as algorithms were implemented for the GPU, it became apparent that the lack of cache and

control makes some algorithms either difficult or inefficient on the GPU. Hence the populariza-

tion of heterogeneous computing, which uses the CPU in cases where the GPU is inefficient and

the GPU where speedups are desired.

By providing an interface for running programs on both the CPU and the GPU, the Wolfram

Language embodies the heterogeneous computing philosophy, allowing users to choose either

the CPU or GPU based on the program’s performance.

CPU Multicore Integration in the Wolfram Language
Most of the built-in functions, like linear algebra, image processing, and wavelets, already make
use of all cores on the system. The Wolfram Language also provides the user with a few ways to
accelerate programs using multiple cores. Those functions can be further extended to run on a
cluster of machines with the use of gridMathematica as well as be used in conjunction with the
GPU capabilities in the Wolfram Language.

Heterogeneous Programming with the Wolfram Language | 3

Compile

The Wolfram Language’s Compile command takes a sequence of inputs and expressions and,

based on the input usage, performs type inferencing to construct a byte code representation of

the program. The byte code can be targeted to the Wolfram Language’s internal virtual

machine—Wolfram Virtual Machine (WVM), or C. Compile is used internally by many Wolfram

Language functions and, when it makes sense, some expressions are automatically compiled for

the user—when constructing a list using a function, for example, the function is automatically

created to speed up the construction.

To use the Compile command, the user passes in the input variables along with a sequence of

Wolfram Language expressions. Compile will automatically perform code optimization—the

following code, for example, performs common subexpression elimination resulting in evaluating

x2 once:

cf = Compile{x}, Sin[x] + x2 -
1

x2


CompiledFunction{x}, Block{Compile`$2}, Compile`$2 = x2;

Sin[x] + Compile`$2 -
1

Compile`$2
, -CompiledCode-

The CompiledFunction returned behaves the same as any Wolfram Language function. It can be

visualized as follows:

Plot[cf[x], {x, -π, π}]

-3 -2 -1 1 2 3

-15

-10

-5

5

10

4 | Heterogeneous Programming with the Wolfram Language

The Compile statement generates byte code from Wolfram Language expressions. The byte

code can be printed to understand what code is being generated:

Needs["CCodeGenerator`"]

CompilePrint[cf]

1 argument

5 Real registers

Underflow checking off

Overflow checking off

Integer overflow checking on

RuntimeAttributes -> {}

R0 = A1

Result = R2

1 R1 = Square[R0]

2 R2 = Sin[R0]

3 R3 = Reciprocal[R1]

4 R4 = - R3

5 R2 = R2 + R1 + R4

6 Return

The byte code generated can be used to target the Wolfram Virtual Machine (WVM), C, LLVM IR,
CUDA, OpenCL, or JVM with both WVM and C built into the Wolfram Language.

Compilation target

By default, Compile targets the WVM, but if CompilationTarget->"C" is set, then Compile will

generate a C version of the Wolfram Language program, compile it, and run it. This allows the
Wolfram Language to run at the same speed as C, without going through low-level C
programming:

cf = Compile{x}, Sin[x] + x2 -
1

x2
, CompilationTarget → "C"

CompiledFunction{x}, Block{Compile`$3}, Compile`$3 = x2;

Sin[x] + Compile`$3 -
1

Compile`$3
, -CompiledCode-

Since the Wolfram Language is highly expressive, programs that take dozens or hundreds of
lines in C code can be written in two or three lines in the Wolfram Language and have similar

performance. The following, for example, uses Compile to generate a multi-threaded C program

to compute the Mandelbrot set. The code is executed from within the Wolfram Language:

compileMandelbrot = Compile[{{c, _Complex}},

Boole[Norm[

FixedPoint[#^2 + c &, 0, 1000, SameTest → (Norm[#] ≥ 4 &)]] ≥ 4],

CompilationTarget → "C", RuntimeAttributes → Listable

];

Heterogeneous Programming with the Wolfram Language | 5

The following sets the evaluation points for the Mandelbrot function:

evaluationPoints =

Table[a + I b, {b, -1, 1, 0.005}, {a, -1.5, 0.5, 0.005}];

And finally, we invoke the function with the evaluation points and plot the result:

ArrayPlot[compileMandelbrot[evaluationPoints]]

Written in C, the above would have taken many hundreds of lines of code, required project
setup, and might not have been portable across systems.

Automatic vectorization

The Wolfram Language can automatically parallelize Compile statements. Making a Com

piledFunction run in parallel is simple—the user only has to pass the option RuntimeAt

tributes->"Listable". From there, Compile will run in as many threads as there are on

the system.

As an example, we implement a basic ray tracer. The ray tracer takes a list of sphere centers,
sphere radii, sphere colors, and a ray origin position. It then shines a parallel ray from the ray
origin, records which sphere intersects the ray, and associates a color with the intersection. We

will compile the code into "C" by passing the CompilationTarget->"C" option, as we will use

RuntimeAttributes->"Listable" to make the code run in parallel:

raySpheresIntersectionColor =

Compile{{centers, _Real, 2}, {radii, _Real, 1},
{colors, _Real, 2}, {x, _Real}, {y, _Real}},

Module{ray = {x, y, 0.0}, v, rad, center, res = {0., 0., 0.}},
Do
rad = radii[[ii]]2;
center = centers[[ii]];
v = Norm[ray - center]2;
Ifv < rad,

res = colors[[ii]]
rad - v

rad
;

, {ii, Length[centers]}
;
res

, CompilationTarget → "C", RuntimeAttributes → Listable
;

Here, we define a Wolfram Language function that calls the preceding compiled function:

rayTraceCompile[centers_, radii_, colors_, x_, y_] :=
Module[{ xx, yy},
xx = Transpose[ConstantArray[x, Length[y]]];
yy = ConstantArray[y, Length[x]];
raySpheresIntersectionColor[centers, radii, colors, xx, yy]

]

6 | Heterogeneous Programming with the Wolfram Language

This constructs the scene, generating 100 spheres in random positions and creating the ray

origins. We use the Wolfram Language symbol ColorData to get colors that follow the

"DarkBands" color scheme:

width = height = 300;
nx = ny = 300;
numSpheres = 100;

centers = TableRandomReal
-width

2
,
width

2
,

RandomReal
-height

2
,
height

2
, RandomReal[100], {numSpheres};

radii = RandomReal[{5, 30}, numSpheres];
colors = ReplaceAllColorData["DarkBands"] /@

Range0, 1, 1  numSpheres, RGBColor → List;
x = width * N[Range[0, nx]]  nx - .5;
y = height * N[Range[0, ny]]  ny - .5;

This runs the ray tracer and visualizes the result:

imgc = rayTraceCompile[centers, radii, colors, x, y];
Image[imgc]

Again, the speed of this program is comparable to a program written in C, but unlike the C
version, our code is around 20 lines long.

Parallel Computing

Built into the Wolfram Language is the capability for multicore computing. The Wolfram
Language’s parallel tools allow users to make use of all cores on their system, developing more
sophisticated projects that execute at a fraction of the time. The Wolfram Language’s parallel
infrastructure is also set up to allow seamless scaling to networks, clusters, and grids.

The most basic parallel program you can write is a Monte Carlo integrator for approximating π
4
.

This is done by generating uniform random points in the [0, 1]×[0, 1] region. The proportion of
points with a norm less than 1 approximates π

4
. The following shows uniform points in the

[0, 1]×[0, 1] region, with red points having a norm less than 1. As can be seen, those points
cover approximately a quarter of a unit circle:

pts = RandomReal[1, {10000, 2}];
Graphics[
{AbsolutePointSize[2], {Red, Point[Select[pts, Norm[#] ≤ 1 &]]},
{Black, Point[Select[pts, Norm[#] > 1 &]]}}]

Heterogeneous Programming with the Wolfram Language | 7

The Wolfram Language has extensive support for list processing. This makes writing the preced-
ing Monte Carlo π approximation trivial:

n = 1000000;
Mean[Table[If[Norm[RandomReal[1, {2}]] ≤ 1, 1.0, 0.0], {n}]]

0.784838

The Wolfram Language has parallel primitives such as ParallelMap and ParallelTable, as well

as Parallelize, which performs automatic parallelization. So, to make the above program run

on multiple cores, the user just has to place Parallelize around Table, and it is automatically

run in parallel:

n = 1000000;
Mean[
Parallelize[
Table[If[Norm[RandomReal[1, {2}]] ≤ 1, 1.0, 0.0], {n}]

]

]

0.784934

Parallel tools allow fine-grained control of how to split the parallel tasks and how many parallel
kernels to run. A queueing mechanism is also available to saturate the CPU usage and achieve
the best speedup.

gridMathematica

gridMathematica extends the Wolfram Language’s parallel functionality to run on homogeneous
and heterogeneous networks and clusters. By installing the gridMathematica server on a
machine, the machine will broadcast its availability to the master machine.

8 | Heterogeneous Programming with the Wolfram Language

Similar to the Wolfram Language’s parallel tools, gridMathematica allows for fine-grained control
over the scheduling of tasks, giving priority to certain kernels. gridMathematica also interfaces
with existing grid management software from Microsoft, Sun, LFS, PBS, and more. It also con-
tains its own management software called Wolfram Lightweight Grid Manager.

Programs written using the Wolfram Language’s parallel tools are valid gridMathematica pro-
grams, and thus the Wolfram Language is easily scalable from single multicore systems to
clusters.

GPU Integration in the Wolfram Language
CUDALink and OpenCLLink offer a high-level interface to the GPU built on top of the Wolfram
Language’s development technologies. They allow users to execute code on their GPU with
minimal effort. Because Wolfram has fully integrated and automated the GPU’s capabilities using
the Wolfram Language, hiding unnecessary complexity associated with GPU programming and
lowering the learning curve for GPU computation, users experience a more productive and
efficient development cycle.

CUDALink and OpenCLLink Support

CUDALink is supported on all CUDA-enabled NVIDIA hardware. OpenCLLink supports both NVIDIA
and AMD GPUs, with only the NVIDIA driver being needed for NVIDIA GPUs. Both the AMD video
driver and AMD APP SDK are needed for AMD. OpenCLLink also supports CPU implementations of
OpenCL provided by either AMD or Intel.

GPUs that have CUDA or OpenCL support are supported by CUDALink or OpenCLLink, with the
Wolfram Language automatically determining the precision of the card and executing the
appropriate function based on the maximal floating-point precision. CUDALink and OpenCLLink
are supported on all platforms supported by the Wolfram Language—Windows, Mac OS X, and
Linux, both 32 and 64 bit.

Making GPU Programming Easy

By removing repetitive and low-level GPU-related tasks, the Wolfram Language makes GPU
programming simple.

Automation of development project management

Unlike other development frameworks that require the user to manage project setup, platform
dependencies, and device configuration, the Wolfram Language makes the process of GPU
programming transparent and automated.

Heterogeneous Programming with the Wolfram Language | 9

Automated GPU memory and thread management

A GPU program written from scratch delegates memory and thread management to the program-
mer. This bookkeeping is required in addition to the need to write the GPU kernel.

With the Wolfram Language, memory and thread management are automatically handled for the
user. The Wolfram Language’s memory manager handles memory transfers intelligently in the
background. Memory, for example, is not copied to the GPU until computation is needed and is
flushed out when the GPU memory gets full.

As a result of hiding the bookkeeping and repetitive tasks found in GPU programming, the
Wolfram Language streamlines the whole programming process, allowing for simpler code, a
shorter development cycle, and better performance.

Integration with the Wolfram Language’s built-in capabilities

The Wolfram Language’s GPU integration provides full access to its built-in functions. Users can
write hybrid algorithms that use the CPU and GPU, depending on the efficiency of each algorithm.

Ready-to-use applications

The Wolfram Language provides several ready-to-use GPU functions that cover a broad range of
topics such as computational mathematics, image processing, financial engineering, and more.

10 | Heterogeneous Programming with the Wolfram Language

Zero device configuration

The Wolfram Language automatically finds, configures, and makes GPU devices available to
users. The Wolfram Language will automatically detect and configure the required tools to make
it simple to use the GPU.

Through the Wolfram Language’s built-in parallel programming support, users can launch GPU
programs on different devices. Users can also scale the setup across machines and networks
using gridMathematica.

Web deployment

The Wolfram Language can be deployed onto a web server using webMathematica. This means
that GPU computation can be initiated from devices that do not have a GPU. This is ideal for the
classroom, where the instructor may want to control the development environment, or mobile
devices, which do not have GPUs.

The Wolfram Language’s CUDALink
CUDALink is a built-in Wolfram Language application that provides an interface for using CUDA

within the Wolfram Language. Through CUDALink, users can execute CUDA programs from the

Wolfram Language with little effort. Because the Wolfram Language makes intelligent choices

about GPU memory transfer, users experience better execution speed compared with handwrit-

ten CUDA programs.

Setting Up CUDALink

CUDALink supplies a set of tools to query the system’s GPU hardware. To use CUDALink opera-

tions, users have to first load the CUDALink application:

Needs["CUDALink`"]

CUDAQ queries whether the current hardware and system configuration support CUDALink. It will

also install the required libraries from the Wolfram server on first invocation:

CUDAQ[]

True

CUDAInformation gives information on the available CUDA hardware:

CUDAInformation[]

{1 → {Name → NVS 5100M, Clock Rate → 1210000, Compute Capabilities → 1.2, GPU Overlap → 1,
Maximum Block Dimensions → {512, 512, 64}, Maximum Grid Dimensions → {65535, 65535, 1},
Maximum Threads Per Block → 512, Maximum Shared Memory Per Block → 16384,
Total Constant Memory → 65536, Warp Size → 32, Maximum Pitch → 2147483647,
Maximum Registers Per Block → 16384, Texture Alignment → 256, Multiprocessor Count → 6,
Core Count → 48, Execution Timeout → 1, Integrated → False, Can Map Host Memory → True,
Compute Mode → Default, Texture1D Width → 8192, Texture2D Width → 65536,
Texture2D Height → 32768, Texture3D Width → 2048, Texture3D Height → 2048,
Texture3D Depth → 2048, Texture2D Array Width → 8192, Texture2D Array Height → 8192,
Texture2D Array Slices → 512, Surface Alignment → 256, Concurrent Kernels → False,
ECC Enabled → False, TCC Enabled → False, Total Memory → 993460224}}

Heterogeneous Programming with the Wolfram Language | 11

CUDALink Programming

Programming the GPU in the Wolfram Language is straightforward. It begins with writing a CUDA
program. The following CUDA program negates the colors of a multichannel image:

src = "

__global__ void cudaColorNegate(mint

*img, mint *dim, mint channels) {

int width = dim[0], height = dim[1];

int xIndex = threadIdx.x + blockDim.x*blockIdx.x;

int yIndex = threadIdx.y + blockDim.y*blockIdx.y;

int index = channels * (xIndex + yIndex*width);

if (xIndex < width && yIndex < height) {

for (int c = 0; c < channels; c++)

img[index + c] = 255 - img[index + c];

}

}";

The source code is passed to CUDAFunctionLoad and the user gets a Wolfram Language

function as output:

CUDAColorNegate = OpenCLFunctionLoad[src, "cudaColorNegate",

{{_Integer, "InputOutput"},

{_Integer, "Input"}, _Integer}, {16, 16}]

CUDAFunction[<>, cudaColorNegate,

{{_Integer, InputOutput}, {_Integer, Input}, _Integer}]

Now you can apply this new CUDA function to an image:

img = ;

CUDAColorNegate[img, ImageDimensions[img], ImageChannels[img]]

 

12 | Heterogeneous Programming with the Wolfram Language

CUDAFunctionLoad follows a simple syntax where the first argument is the CUDA source, the

second argument is the function name to be invoked, the third argument is a list of function
parameter types, and the final argument is the workgroup size (block dimension):

Several things need to happen behind the scenes at this stage to load the CUDA code into the
Wolfram Language efficiently.

First, we need to check to see if the arguments to CUDAFunctionLoad are valid. Since this is the

most common source of errors, we have to catch it early. Second, we compile the CUDA function

and cache it. The output from this step is a CUDAFunction that behaves like any Wolfram

Language function.

When a CUDAFunction is invoked, we perform input checking to make sure it matches the input

specification. We next load the data onto the GPU (memory copies are performed in a lazy
fashion to minimize memory copy overhead). We then invoke a synchronization to make sure all
computation has been performed and get the results from the GPU.

CUDALink Applications in the Wolfram Language
In this section we detail some CUDALink applications. CUDALink comes with a dozen or so built-
in functions that do not require the user to know CUDA programming. The built-in functions
mirror the Wolfram Language’s functions, so they are easy to learn and use.

Image Processing

CUDALink’s image processing capabilities can be classified into three categories. The first is
convolution, which is optimized for CUDA. The second is morphology, which contains abilities
such as erosion, dilation, opening, and closing. Finally, there are the pixel operators. These are
image multiplication, division, subtraction, and addition.

Heterogeneous Programming with the Wolfram Language | 13

CUDALink’s convolution is similar to the Wolfram Language’s ListConvolve and ImageConvolve

functions. It will operate on images, lists, or CUDA memory references, and it can use the
Wolfram Language’s built-in filters as the kernel:

CUDAImageConvolve ,
-1 0 1
-2 0 2
-1 0 1



Convolving a microscopic image with a Sobel mask to detect edges.

CUDALink supports pixel operations on one or two images, such as adding or multiplying pixel
values from two images:

CUDAImageMultiply , 

Multiplication of two images.

Finally, morphology operations are supported. Here we use the Manipulate function, which

makes creating GUI interfaces simple:

ManipulateCUDAErosion , radius, {radius, 0, 9}

Construction of an interface that performs a morphological operation on an image with varying radii.

14 | Heterogeneous Programming with the Wolfram Language

Fast Fourier Transforms and Linear Algebra

Users can perform Fourier transforms and various linear algebra operations with CUDALink.

Methods such as matrix-matrix multiplication, matrix-vector multiplication, finding minimum and

maximum elements, and transposing matrices are all accelerated to use the GPU.

Here, we multiply two matrices together:

CUDADot

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

,

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

 // MatrixForm

15 15 15 15 15
30 30 30 30 30
45 45 45 45 45
60 60 60 60 60
75 75 75 75 75

Performing matrix multiplication.

Financial Engineering

CUDALink has built-in financial options pricing capabilities, which use the analytic solution, the

binomial solution, or Monte Carlo methods, depending on the type of option selected. The

following shows the American put option’s surface plot as the spot price and expiry vary:

ListPlot3D[ParallelMap[CUDAFinancialDerivative[{"American", "Put"},

{"StrikePrice" → 80., "Barriers" → 100, "Expiration" → #},

{"CurrentPrice" → Range[30., 130., 1], "InterestRate" → 0.06,

"Volatility" → 0.45, "Dividend" → 0.02, "Rebate" → 5.}] &,

Range[0.2, 10, 0.2]], DataRange → {{30, 130}, {0.2, 10}},

AxesLabel → {"Stock", "Time", "Option"}]

A three-dimensional plot of the CUDA-evaluated American put. In this case, we utilize parallel programming

over CPUs in addition to that provided by the GPU.

Heterogeneous Programming with the Wolfram Language | 15

Complex Dynamics

CUDALink enables you to easily investigate computationally intensive complex dynamics struc-
tures. We will compute the Julia set, which is a generalization of the Mandelbrot set. The follow-
ing implements the CUDA kernel:

code = "
__global__ void julia_kernel(Real_t * set,

int width, int height, Real_t cx, Real_t cy) {

int xIndex = threadIdx.x + blockIdx.x*blockDim.x;
int yIndex = threadIdx.y + blockIdx.y*blockDim.y;
int ii;

Real_t x = ZOOM_LEVEL*(width/2 - xIndex);
Real_t y = ZOOM_LEVEL*(height/2 - yIndex);
Real_t tmp;
Real_t c;

if (xIndex < width && yIndex < height) {

for (ii = 0; ii <

MAX_ITERATIONS && x*x + y*y < BAILOUT; ii++) {

tmp = x*x - y*y + cx;
y = 2*x*y + cy;
x = tmp;

}

c = log(0.1f + sqrt(x*x + y*y));
set[xIndex + yIndex*width] = c;

}

}";

This loads the CUDAFunction. Notice that the syntax is the same as OpenCLFunctionLoad. While

we did not show macros being used in OpenCLLink, macros are used here to allow the compiler
to further optimize the code:

JuliaCalculate = CUDAFunctionLoad[code, "julia_kernel",
{{_Real, "Output"}, _Integer, _Integer, _Real, _Real},
{16, 16}, "Defines" → {"MAX_ITERATIONS" → 10,

"ZOOM_LEVEL" → "0.0050", "BAILOUT" → "4.0"}];

The width and height are set and the output memory is allocated:

{width, height} = {512, 512};
jset = CUDAMemoryAllocate[Real, {height, width}];

This creates an interface using Manipulate and ReliefPlot where you can adjust the value of

the constant c interactively:

Manipulate[
JuliaCalculate[jset, width,
height, c[[1]], c[[2]], {width, height}];

ReliefPlot[Reverse@CUDAMemoryGet[jset], ColorFunction → "Rainbow",
DataRange → {{-2.0, 2.0}, {-2.0, 2.0}}, ImageSize → 512,
Frame → None, Epilog → {Opacity[.5], Dashed, Thick, Line[

{{{c[[1]], -2}, {c[[1]], 2}}, {{-2, c[[2]]}, {2, c[[2]]}}}]}],
{{c, {0, 1}}, {-2, -2}, {2, 2}, Locator, Appearance →

Graphics[{Thick, Dashed, Opacity[.75], Circle[]}, ImageSize → 50]}]

16 | Heterogeneous Programming with the Wolfram Language

Interactive computation and rendering of a Julia set.

Brownian Motion

Brownian motion is a very important concept in many scientific fields. It is used in computational
chemistry, physics, and finance. In the following code, we use the CURAND kernel library to
generate random numbers for computing sample paths of Brownian motion:

code = "
#include \"curand_kernel.h\"
extern \"C\" __global__ void

brownianMotion(Real_t *out, mint pathLen, mint pathN) {

curandState rngState;
Real_t sum = 0;
int index = threadIdx.x + blockIdx.x*blockDim.x;
curand_init(1234, index, 0, &rngState);
if (index < pathN) {

out[index] = sum;
for (int ii = 1; ii < pathLen; ii++) {

sum += curand_normal(&rngState);
out[ii*pathN + index] = sum;

}

}

}";

The following loads the preceding CUDA code into the Wolfram Language:

cudaBM = CUDAFunctionLoad[code, "brownianMotion",
{{_Real, "Output"}, _Integer, _Integer},
64, "UnmangleCode" → False];

The following sets the function parameters. We use a low path length and path number to make
it easy to see the motion path:

pathLen = 1024;
pathN = 16;
out = ConstantArray[0, {pathLen, pathN}];

Heterogeneous Programming with the Wolfram Language | 17

The following visualizes the result:

res = Transpose[First[cudaBM[out, pathLen, pathN, pathN]]];

ListLinePlot[res]

200 400 600 800 1000

-50

50

The possibilities are open for more complicated and broader applications of the GPU capabilities
in the Wolfram Language. And with little effort, programs can be written so that they execute on
either the CPU or GPU, depending on the detected hardware.

The Wolfram Language’s OpenCLLink
In addition to CUDA support, the Wolfram Language provides OpenCL support. By providing the
same usage syntax as CUDALink, the Wolfram Language is unique in enabling easy porting of
CUDA applications to OpenCL and vice versa. In this section, we show how to load OpenCL
programs into the Wolfram Language.

Setting Up OpenCLLink
OpenCLLink supplies functions that query the system’s GPU hardware. To use OpenCLLink
operations, users have to first load the OpenCLLink application:

Needs["OpenCLLink`"]

OpenCLQ tells whether the current hardware and system configuration support OpenCLLink:

OpenCLQ[]

True

OpenCLInformation gives information on the available OpenCL hardware. Here, we query

information about the first platform and device installed on the system:

OpenCLInformation[1, 1]
{"Type" → "GPU", "Name" → "Tesla C2050 / C2070", "Version" → "OpenCL 1.0 CUDA",
"Extensions" → {"cl_khr_byte_addressable_store", "cl_khr_icd", "cl_khr_gl_sharing",

"cl_nv_d3d9_sharing", "cl_nv_d3d10_sharing", "cl_khr_d3d10_sharing", "cl_nv_d3d11_sharing",
"cl_nv_compiler_options", "cl_nv_device_attribute_query", "cl_nv_pragma_unroll",
"cl_khr_global_int32_base_atomics", "cl_khr_global_int32_extended_atomics",
"cl_khr_local_int32_base_atomics", "cl_khr_local_int32_extended_atomics", "cl_khr_fp64"},

"Driver Version" → "270.81", "Vendor" → "NVIDIA Corporation", "Profile" → "FULL_PROFILE",
"Vendor ID" → 4318, "Compute Units" → 14, "Core Count" → 448,
"Maximum Work Item Dimensions" → 3, "Maximum Work Item Sizes" → {1024, 1024, 64},
"Maximum Work Group Size" → 1024, "Preferred Vector Width Character" → 1,
"Preferred Vector Width Short" → 1, "Preferred Vector Width Integer" → 1,
"Preferred Vector Width Long" → 1, "Preferred Vector Width Float" → 1,
"Preferred Vector Width Double" → 1, "Maximum Clock Frequency" → 1147,
"Address Bits" → 32, "Maximum Memory Allocation Size" → 695 091200, "Image Support" → True,
"Maximum Read Image Arguments" → 128, "Maximum Write Image Arguments" → 8,
"Maximum Image2D Width" → 4096, "Maximum Image2D Height" → 32768,
"Maximum Image3D Width" → 2048, "Maximum Image3D Height" → 2048,
"Maximum Image3D Depth" → 2048, "Maximum Samplers" → 16, "Maximum Parameter Size" → 4352,
"Memory Base Address Align" → 4096, "Memory Data Type Align Size" → 128,
"Floating Point Precision Configuration" → {"Denorms", "Infinity", "NaNs",

"Round to Nearest", "Round to Infinity", "Round to Zero", "IEEE754-2008 Fused MAD"},
"Global Memory Cache Type" → "Read Write", "Global Memory Cache Line Size" → 128,
"Global Memory Cache Size" → 229376, "Global Memory Size" → 2780364800,
"Maximum Constant Buffer Size" → 65536, "Maximum Constant Arguments" → 9,
"Local Memory Type" → "Local", "Local Memory Size" → 49152, "Error Correction Support" → True,
"Profiling Timer Resolution" → 1000, "Endian Little" → True, "Available" → True,
"Compiler Available" → True, "Execution Capabilities" → {"Kernel Execution"},
"Command Queue Properties" → {"Out of Order Execution", "Profiling Enabled"}}

Example of a report generated by OpenCLInformation.

18 | Heterogeneous Programming with the Wolfram Language

OpenCLLink Programming

Programming the GPU in the Wolfram Language using OpenCL is as straightforward as CUDA.
Here is the OpenCL source code for the same color negate operation:

src = "

__kernel void openclColorNegate(__global

mint *img, __global mint *dim, mint channels) {

int width = dim[0], height = dim[1];

int xIndex = get_global_id(0), yIndex = get_global_id(1);

int index = channels * (xIndex + yIndex*width);

if (xIndex < width && yIndex < height) {

for (int c = 0; c < channels; c++)

img[index + c] = 255 - img[index + c];

}

}";

As with CUDALink, the source code is passed to OpenCLFunctionLoad, and the user gets a

Wolfram Language function as output:

OpenCLColorNegate = OpenCLFunctionLoad[src, "openclColorNegate",

{{_Integer, "InputOutput"},

{_Integer, "Input"}, _Integer}, {16, 16}]

OpenCLFunction[<>, openclColorNegate,

{{_Integer, InputOutput}, {_Integer, Input}, _Integer}]

Now the function can be used:

img = ;

OpenCLColorNegate[img, ImageDimensions[img], ImageChannels[img]]

 

Heterogeneous Programming with the Wolfram Language | 19

CUDAFunctionLoad follows the same syntax as CUDALink, where the first argument is the

OpenCL source, the second argument is the function name to be invoked, the third argument is
a list of function parameter types, and the final argument is the workgroup size (block
dimension):

As with CUDALink, behind-the-scenes processing needs to be performed to make sure that
invocation of the function is efficient.

OpenCLLink Applications in the Wolfram Language
In this section we discuss some applications that run on the GPU using OpenCLLink. In the
Wolfram Language you can perform sophisticated heterogeneous computation easily by leverag-
ing a variety of built-in features.

Black–Scholes Equation

The Black–Scholes equation is the basis of computational finance. It states that a European call
option can be modeled by a formula implemented by the following OpenCL program:

code = "

#ifdef USING_DOUBLE_PRECISIONQ

#ifdef OPENCLLINK_USING_NVIDIA

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

#else /* OPENCLLINK_USING_NVIDIA */

#pragma OPENCL EXTENSION cl_amd_fp64 : enable

#endif /* OPENCLLINK_USING_NVIDIA */

#endif /* USING_DOUBLE_PRECISIONQ */

#define N(x) (erf((x)/sqrt(2.0))/2+0.5)

__kernel void blackScholes(__global Real_t *

call, __global Real_t * S, __global Real_t * X,

__global Real_t * T, __global Real_t * R, __global

Real_t * Q, __global Real_t * V, mint length) {

int ii = get_global_id(0);

if (ii < length) {

Real_t d1 =

(log(S[ii]/X[ii])+(R[ii]-Q[ii]+(pow(V[ii],(Real_t)2.0)/2)*T[

ii]))/(V[ii]*sqrt(T[ii]));

Real_t d2 = d1 - V[ii]*sqrt(T[ii]);

call[ii] = S[ii]*exp(-Q[ii]*T[ii])*N(d1)

- X[ii]*exp(-R[ii]*T[ii])*N(d2);

}

}";

20 | Heterogeneous Programming with the Wolfram Language

Real_t is a type defined by the Wolfram Language that maps to the highest precision of the

OpenCL device. This ensures that users are getting the best accuracy when computing.

The following loads the preceding OpenCL code into the Wolfram Language:

OpenCLBlackScholes =

OpenCLFunctionLoad[code, "blackScholes", {{_Real}, {_Real, "Input"},

{_Real, "Input"}, {_Real, "Input"}, {_Real, "Input"},

{_Real, "Input"}, {_Real, "Input"}, _Integer}, 128]

OpenCLFunction[<>, blackScholes,

{{_Real}, {_Real, Input}, {_Real, Input}, {_Real, Input},

{_Real, Input}, {_Real, Input}, {_Real, Input}, _Integer}]

This gets the stock price for the S&P 500 from the beginning of 2010 to April 2011. This data is
curated by Wolfram Research and accessible via a web connection:

data = Transpose[FinancialData["SP500", {{2010, 0, 0}, {2011, 4, 0}}]];

This uses the S&P 500 data for the spot price and the dates for the expiration values. The rest of
the data is randomly generated:

Needs["Calendar`"]

numberOfOptions = Length[data[[1]]];

call = ConstantArray[0.0, numberOfOptions];

S = data[[2]];

X = 1.1 * data[[2]];

T = DaysBetween[#, {2011, 4, 20}] & /@ data[[1]]  365.;

R = RandomReal[{0.03, 0.07}, numberOfOptions];

Q = RandomReal[{0.01, 0.04}, numberOfOptions];

V = RandomReal[{0.10, 0.50}, numberOfOptions];

The following runs the computation on the OpenCL device:

res = OpenCLBlackScholes[call, S, X, T, R, Q, V, numberOfOptions];

We visualize the result as a Kagi chart. This visualization function is part of the Wolfram Lan-
guage’s comprehensive support for visualization and charting, which includes plotting surfaces,
computing bar and pie charts, and interacting with trading charts:

KagiChart[Transpose[{data[[1]], res[[1]]}]]

2009 2010 2011

1000.

1100.

1200.

1300.

Heterogeneous Programming with the Wolfram Language | 21

Computing with Data from an Excel File

The Wolfram Language supports many import and export formats. One such format is Excel
(XLS), which we use in this example as the source for our data when calculating the one-touch
option:

code = "

#define N(x) (erf((x)/sqrt(2.0))/2+0.5)

__kernel void onetouch(__global Real_t * call, __global

Real_t * put, __global Real_t * S, __global Real_t *

X, __global Real_t * T, __global Real_t * R, __global

Real_t * D, __global Real_t * V, mint length) {

Real_t tmp, d1, d5, power;

int ii = get_global_id(0);

if (ii < length) {

d1 = (log(S[ii]/X[ii]) + (R[ii] - D[ii] + 0.5f

* V[ii] * V[ii]) * T[ii]) / (V[ii] * sqrt(T[ii]));

d5 = (log(S[ii]/X[ii]) - (R[ii] - D[ii] + 0.5f *

V[ii] * V[ii]) * T[ii]) / (V[ii] * sqrt(T[ii]));

power = pow(X[ii]/S[ii], 2*R[ii]/(V[ii]*V[ii]));

call[ii] = S[ii] < X[ii]

? power * N(d5) + (S[ii]/X[ii])*N(d1) : 1.0;

put[ii] = S[ii] > X [ii] ? power * N(-d5)

+ (S[ii]/X[ii])*N(-d1) : 1.0;

}

}";

This loads the OpenCL function into the Wolfram Language in single-precision mode:

OpenCLOneTouchOption =

OpenCLFunctionLoad[code, "onetouch", {{_Real, "Output"},

{_Real, "Output"}, {_Real, "Input"}, {_Real, "Input"},

{_Real, "Input"}, {_Real, "Input"}, {_Real, "Input"},

{_Real, "Input"}, _Integer}, 128, "TargetPrecision" → "Single"];

This imports the data from an Excel file and stores it in a Wolfram Language table:

rawData = First[Import["dataset.xlsx", "Data"]];

Do[data[First[row]] = Drop[row, 1], {row, Transpose[rawData]}];

numberOfOptions = Length[data["Spot Price"]];

This allocates memory for both the call and put results. We allocate the data as single-precision
float:

call = OpenCLMemoryAllocate["Float", numberOfOptions];

put = OpenCLMemoryAllocate["Float", numberOfOptions];

This calls the function:

OpenCLOneTouchOption[call, put, data["Spot Price"],

data["Strike Price"], data["Expiration"], data["Interest"],

data["Dividend"], data["Volatility"], numberOfOptions]

{OpenCLMemory[<29650>, Float], OpenCLMemory[<29636>, Float]}

22 | Heterogeneous Programming with the Wolfram Language

This retrieves the result for the call option:

OpenCLMemoryGet[call]

{1., 1., 0.93962, 1.63052, 0.895195, 1., 1., 1., 1., 0.940062, 0.719849,

0.844359, 0.95156, 1., 1., 1., 0.933998, 1., 1.00517, 1., 0.113093,

0.34359, 1., 1., 1., 1., 1., 0.865092, 0.913892, 6.13967, 1., 1.38213,

1., 0.939484, 1., 1., 1., 1.0914, 1., 1.0485, 0.889275, 0.991108,

0.35102, 0.689786, 1., 1., 1., 1., 0.982171, 3.07142, 1., 1.,

0.999357, 0.850779, 1., 2.53988, 1., 1., 1., 1., 1., 0.852829, 1., 1.}

Conway’s Game of Life

Conway’s Game of Life is an example of a simple two-dimensional cellular automaton. From
simple rules that look only at the eight neighbors, it gives rise to complicated patterns. Here is a
basic OpenCL program that implements the Game of Life:

src = "

__kernel void gol_kernel(__global mint * prev,

__global mint * nxt, mint width, mint height) {

int xIndex = get_global_id(0), yIndex = get_global_id(1);

int index = xIndex + yIndex*width;

int ii, jj, curr, neighbrs;

if (xIndex < width && yIndex < height) {

curr = prev[index];

for (ii = -1, neighbrs = -curr; ii <= 1; ii++) {

if (xIndex + ii >= 0 && xIndex+ii < width) {

for (jj = -1; jj <= 1; jj++) {

if (yIndex+jj >= 0 && yIndex+jj < height)

neighbrs += prev[xIndex + ii + (yIndex+jj)*width];

}

}

}

if (curr == 1)

nxt[index] = (neighbrs == 2 || neighbrs == 3) ? 1 : 0;

else

nxt[index] = (neighbrs == 3) ? 1 : 0;

}

}";

This loads the function using OpenCLFunctionLoad. We set the workgroup size to 16×16:

OpenCLGameOfLife =

OpenCLFunctionLoad[src, "gol_kernel", {{_Integer, "Input"},

{_Integer, "Output"}, _Integer, _Integer}, {16, 16}]

OpenCLFunction[<>, gol_kernel,

{{_Integer, Input}, {_Integer, Output}, _Integer, _Integer}]

Heterogeneous Programming with the Wolfram Language | 23

We set the initial state using random choice, setting 70% of the 512×512 initial states to zero,
while the rest are set to 1. We set the output state to all zeros:

initialState = RandomChoice[{0.7, 0.3} → {0, 1}, {512, 512}];

outputState = ConstantArray[0, {512, 512}];

This uses Dynamic to animate the result at 60 frames per second:

Dynamic

Refresh

initialState =

First[OpenCLGameOfLife[initialState, outputState, 512, 512]];

ArrayPlot[initialState, ImageSize → Medium],

UpdateInterval → 1  60





Many-Body Physical Systems

The N-body simulation is a classic Newtonian problem. The OpenCL implementation is included
as part of the Wolfram Language distribution:

srcf = FileNameJoin[{$OpenCLLinkPath, "SupportFiles", "NBody.cl"}];

This loads OpenCLFunction. Note that you can pass the vector type "float4" into the OpenCL

program, and the Wolfram Language handles the conversion:

NBody = OpenCLFunctionLoad[{srcf}, "nbody_sim",

{{"Float[4]", "Input"}, {"Float[4]", "Input"},

_Integer, "Float", "Float", {"Local", "Float"},

{"Float[4]", "Output"}, {"Float[4]", "Output"}}, 256]

OpenCLFunction[<>, nbody_sim,

{{Float[4], _, Input}, {Float[4], _, Input}, _Integer, Float, Float,

{Local, Float}, {Float[4], _, Output}, {Float[4], _, Output}}]

The number of particles, time step, and epsilon distance are chosen:

numParticles = 1024;

deltaT = 0.05;

epsSqrt = 50.0;

24 | Heterogeneous Programming with the Wolfram Language

This sets the input and output memories:

pos =

OpenCLMemoryLoad[RandomReal[512, {numParticles, 4}], "Float[4]"];

vel = OpenCLMemoryLoad[RandomReal[1, {numParticles, 4}], "Float[4]"];

newPos = OpenCLMemoryAllocate["Float[4]", {numParticles, 4}];

newVel = OpenCLMemoryAllocate["Float[4]", {numParticles, 4}];

This calls the NBody function:

NBody[pos, vel, numParticles,

deltaT, epsSqrt, 256 * 4, newPos, newVel, 1024];

NBody[newPos, newVel, numParticles, deltaT,

epsSqrt, 256 * 4, pos, vel, 1024];

This plots the body points:

Graphics3D[Point[Take[#, 3] & /@ OpenCLMemoryGet[pos]]]

This animates the result using Dynamic:

Graphics3D[Point[

Dynamic[Refresh[

NBody[pos, vel, numParticles,

deltaT, epsSqrt, 256 * 4, newPos, newVel, 1024];

NBody[newPos, newVel, numParticles, deltaT,

epsSqrt, 256 * 4, pos, vel, 1024];

Take[#, 3] & /@ OpenCLMemoryGet[pos], UpdateInterval → 0]]]]

Real-time animation of the N-body simulation.

Heterogeneous Programming with the Wolfram Language | 25

OpenCL on the Web with webMathematica

Wolfram Research also offers webMathematica, which allows you to deploy Wolfram Language
programs on the web by embedding them in JavaServer Pages (JSP). This allows heterogeneous
computation to be performed on the server from within a client’s web browser.

There are many possible applications for this. The preceding shows a teaching module devel-
oped to enable students to program an OpenCL kernel without being exposed to either Wolfram
Language syntax or host-side programming. When a user clicks Submit, the OpenCL kernel is

compiled, an OpenCLFunction is generated, and the function is applied to an image. The com-

puted image is then displayed on the screen for the user.

Aside from the academic applications, in some cases it is desirable to have a powerful work-
station where users can invoke OpenCL computation from within the browser or mobile devices—
invoking a financial computation using the latest stock data from a smart phone, for example.
webMathematica is a solution for such scenarios.

26 | Heterogeneous Programming with the Wolfram Language

The Wolfram Language Advantage
If you were to combine the performance computing aspects in the Wolfram Language with the
following Wolfram Language features, you could develop nontrivial heterogeneous programs
intuitively.

Free-Form Linguistic Input

The Wolfram Language is unique in providing an avenue for users to write programs in plain
English. The Wolfram Language uses Wolfram|Alpha to interpret the result, showing both the
Wolfram Language input code and the corresponding output:

plot of sin x y

3D plot

Plot3D[y * Sin[x], {x, -6.3, 6.3}, {y, -1, 1}]



Simple Interface Creation

The Wolfram Language makes it simple to create interactive user interfaces. The interfaces can
be used to experiment with parameter values or as teaching modules, or deployed using the
Computable Document Format.

The following creates an interface that allows users to adjust the radius and threshold parame-
ters for the Canny edge detector:

ManipulateEdgeDetect , r, t,

{{r, 2, "radius"}, 1, 10}, {{t, .1, "threshold"}, 0, .5}

Heterogeneous Programming with the Wolfram Language | 27

Broad Field Coverage

By using both the CPU and the GPU and making them available to the user, the Wolfram
Language embodies the heterogeneous message. Users have written code that uses both the
CPU and GPU concurrently on multiple machines to solve tasks in computer vision, medical
imaging, mathematics, and physics.

Since the Wolfram Language has broad field coverage, a reference implementation is likely to
exist. This makes benchmarking and testing simple. This, for example, finds all lines in an input
image:

img = ;

lines = ImageLines[EdgeDetect[img], .28, .06];

Show[img, Graphics[{Thick, Red, Line /@ lines}]]

Here is another example that computes the discrete wavelet transform of an image:

dwd = DiscreteWaveletTransform , Automatic, 2;

We can plot the wavelet decomposition as an image pyramid:

WaveletImagePlot[dwd]

28 | Heterogeneous Programming with the Wolfram Language

Import/Export

The Wolfram Language has extensive support for importing and exporting data from hundreds of
formats. These formats include PNG and JPEG for images, LaTeX and EPS for typesetting, and
XLS and CSV for spreadsheet data.

For example, the following imports the dataset from a GRIB file. This file format is common in
meteorology to store historical and forecast weather data:

data = Import["ExampleData/temperature.grb",

{"Datasets", "Temperature", 1}];

This renders the dataset as an image:

Colorize[ImageAdjust[Image[Reverse[data]]],

ColorFunction → "ThermometerColors"]

C Code Generation

The Wolfram Language has the ability to export expressions written using Compile to a C file.

The C file can then be compiled and either run as a Wolfram Language command (for native
speed) or integrated with an external application using the Wolfram Runtime Library.

LibraryLink

LibraryLink allows you to load C functions as Wolfram Language functions. It is similar in purpose
to WSTP (Wolfram Symbolic Transfer Protocol), but by running in the same process as the
Wolfram System kernel, it avoids the memory transfer cost associated with WSTP. This loads a C
function from a library; the function adds one to a given integer:

addOne = LibraryFunctionLoad["demo", "demo_I_I", {Integer}, Integer]

LibraryFunction[<>, demo_I_I, {Integer}, Integer]

The library function is run with the same syntax as any other function:

addOne[3]

4

CUDALink and OpenCLLink are written using LibraryLink and thus are prime examples of
LibraryLink’s capabilities.

Heterogeneous Programming with the Wolfram Language | 29

Symbolic C Code

Using the Wolfram Language’s symbolic capabilities, users can generate C programs within the
Wolfram Language. The example presented here creates macros for common math constants
and manipulates the expression to convert the macros to constant declarations. To use the
Wolfram Language’s symbolic C code generation capabilities, you first need to import the
SymbolicC package:

Needs["SymbolicC`"]

This gets all constants in the Wolfram Language context and uses SymbolicC’s CDefine to

declare a C macro:

s = Map[CDefine[ToString[#], N[#]] &, Map[ToExpression,

Select[Names["System`*"], MemberQ[Attributes[#], Constant] &]]]

{CDefine[Catalan, 0.915966],

CDefine[Degree, 0.0174533], CDefine[E, 2.71828],

CDefine[EulerGamma, 0.577216], CDefine[Glaisher, 1.28243],

CDefine[GoldenRatio, 1.61803], CDefine[Khinchin, 2.68545],

CDefine[MachinePrecision, 15.9546], CDefine[Pi, 3.14159]}

The symbolic expression can be converted to a C string using the ToCCodeString function:

ToCCodeString[s]

#define Catalan 0.915965594177219

#define Degree 0.017453292519943295

#define E 2.718281828459045

#define EulerGamma 0.5772156649015329

#define Glaisher 1.2824271291006226

#define GoldenRatio 1.618033988749895

#define Khinchin 2.6854520010653062

#define MachinePrecision 15.954589770191003

#define Pi 3.141592653589793

By representing the C program symbolically, users can manipulate it using standard Wolfram
Language techniques. Here, we convert all the macros to constant values:

s = ReplaceAll[s, CDefine[name_, val_] →

CDeclare[{"const", "double"}, CAssign[name, val]]]

{CDeclare[{const, double}, CAssign[Catalan, 0.915966]],

CDeclare[{const, double}, CAssign[Degree, 0.0174533]],

CDeclare[{const, double}, CAssign[E, 2.71828]],

CDeclare[{const, double}, CAssign[EulerGamma, 0.577216]],

CDeclare[{const, double}, CAssign[Glaisher, 1.28243]],

CDeclare[{const, double}, CAssign[GoldenRatio, 1.61803]],

CDeclare[{const, double}, CAssign[Khinchin, 2.68545]],

CDeclare[{const, double}, CAssign[MachinePrecision, 15.9546]],

CDeclare[{const, double}, CAssign[Pi, 3.14159]]}

30 | Heterogeneous Programming with the Wolfram Language

Again, the code can be converted to a C string using ToCCodeString:

ToCCodeString[s]

const double Catalan = 0.915965594177219;

const double Degree = 0.017453292519943295;

const double E = 2.718281828459045;

const double EulerGamma = 0.5772156649015329;

const double Glaisher = 1.2824271291006226;

const double GoldenRatio = 1.618033988749895;

const double Khinchin = 2.6854520010653062;

const double MachinePrecision = 15.954589770191003;

const double Pi = 3.141592653589793;

Using the Wolfram Language’s symbolic code generation tools, you can easily write domain-
specific languages that facilitate meta-programming—programs that write other programs.

Scalability

The Wolfram Language programs everything from low-end netbooks to high-end workstations
and clusters. Through our support of all GPU cards and automatic floating-point precision detec-
tion, the Wolfram Language facilitates scalable GPU programming.

Multi-GPU programming, for example, is as simple as wrapping Parallelize around a GPU

function. The following performs an image morphological operation on the GPU using all four
GPU cards installed on a system:

GraphicsGridPartitionParallelize

TableCUDAErosion[img, 5, "Device" → $KernelID], img,

FlattenPermutations , , , , 2,

8

Wolfram Research has many technological offerings that make scaling upward and downward
possible. Wolfram’s licensing is also adaptive, allowing users to choose the most convenient and
cost-effective plan for their needs.

Heterogeneous Programming with the Wolfram Language | 31

Summary
The Wolfram Language provides several key built-in technologies that allow for easy
transitioning to using heterogeneous-based computing. As proof of the simplicity, in the past few
pages we wrote a dozen heterogeneous programs in diverse fields that would have been difficult
to do in any other system.

The Wolfram Language’s advantage lies in being able to provide all these features built into the
product, having them be portable across operating systems, providing an intuitive interface for
their use through careful functionality design, and making them scalable to low-end and high-
end systems.

Pricing and Licensing Information
Wolfram Research offers many flexible licensing options for both organizations and individuals.
You can choose a convenient, cost-effective plan for your workgroup, department, directorate,
university, or just yourself, including network licensing for groups.

Visit us online for more information:
www.wolfram.com/mathematica/how-to-buy

Recommended Next Steps

Try the Wolfram Language in Mathematica for free:
www.wolfram.com/mathematica/trial

Schedule a technical demo:
www.wolfram.com/mathematica-demo

Learn more about heterogeneous computing with the Wolfram Language:
US and Canada: Europe:
1-800-WOLFRAM (965-3726) +44-(0)1993-883400
info@wolfram.com info@wolfram.co.uk

Outside US and Canada (except Europe and Asia): Asia:
+1-217-398-0700 +81-(0)3-3518-2880
info@wolfram.com info@wolfram.co.jp

© The Wolfram Companies. Trademarks: Mathematica, Wolfram Language, Wolfram Knowledgebase, Wolfram Workbench,
Wolfram CDF Player, gridMathematica, webMathematica, Wolfram Lightweight Grid, Computable Document Format, Wolfram
Symbolic Transfer Protocol, Wolfram System, Wolfram|Alpha. MKT 1237 TCS-262 0204.BW

32 | Heterogeneous Programming with the Wolfram Language

http://www.wolfram.com/products/mathematica/purchase.html
http://www.wolfram.com/mathematica/trial/
http://www.wolfram.com/products/mathematica/demo.cgi

