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Introduction
The  past  few  years  have  seen  an  increase  in  the  number  of  cores  on  both  the  CPU  and  GPU.
Despite  this,  developers  have  not  been  able  to  fully  utilize  the  parallel  frameworks.  Since  de-
velopers began to target the CPU and GPU frameworks, they realized that some algorithms map
nicely onto the CPU while others work best with the GPU. As a result,  much research has been
done  to  develop  algorithms  that  exploit  both  the  CPU’s  and  GPU’s  capabilities.  The  research
culminated  in  a  heterogeneous  school  of  thought,  with  both  the  CPU and  GPU collaborating  to
maximize  the  accuracy  and  speed  of  the  user’s  program.  In  such  methodology,  the  GPU  is
utilized in parts where it excels, as is the CPU. Yet while heterogeneous algorithms are ideal, no
system has exposed built-in access to both the CPU and the GPU with a concise and easy-to-use
syntax like the Wolfram Language, which makes heterogeneous computing easy.

By providing an environment where programs can be run on either the CPU or GPU, the Wolfram
Language  realizes  the  heterogeneous  message.  Coupled  with  its  comprehensive  import/export
support,  symbolic  computation,  extensive field  coverage,  state-of-the-art  visualization features,
platform neutrality, and ease of use, the Wolfram Language is ideal for heterogeneous algorithm
development.

This white paper is divided as follows: first, we briefly discuss what the Wolfram Language is and
why  you  should  use  it  for  heterogeneous  computing,  then  we  look  at  some  of  the  Wolfram
Language’s multicore and GPU features, develop a dozen applications along the way, and finally
discuss why the Wolfram Language has an advantage over other systems.

A Brief Introduction to the Wolfram Language
The Wolfram Language  is  a  flexible  programming language with  a  wide range of  symbolic  and
numeric  computational  capabilities,  high-quality  visualizations,  built-in  application  area  pack-
ages,  and  a  range  of  immediate  deployment  options.  Combined  with  integration  of  dynamic
libraries, automatic interface construction, and C code generation, the Wolfram Language is the
most sophisticated build-to-deploy environment on the market today.

The Wolfram Language has the ability to perform computations on the GPU and thus facilitates
heterogeneous  computing.  For  developers,  this  new  integration  means  native  access  to  the
Wolfram Language’s computing abilities—creating hybrid algorithms that combine the CPU and
the GPU. Following are some key features of the Wolfram Language.

Free-Form Linguistic Input
The  Wolfram  Language’s  free-form  linguistic  input  is  the  ability  to  interpret  English  text  as
Wolfram  Language  code.  It  is  a  breakthrough  in  usability,  making  development  intuitive  and
simple.

Multiparadigm Programming Language
The Wolfram Language is a highly declarative functional language that also enables you to use
several  different  programming  paradigms,  such  as  procedural  and  rule-based  programming.
Programmers can choose their own style for writing code with minimal effort. Along with compre-
hensive  documentation  and  resources,  the  Wolfram  Language's  flexibility  greatly  reduces  the
cost of entry for new users. 

Symbolic-Numeric Hybrid System
The principle behind the Wolfram Language is full integration of symbolic and numeric comput-
ing  capabilities.  Through  its  full  automation  and  preprocessing  mechanisms,  users  reap  the
power of a hybrid computing system without needing knowledge of specific methodologies and
algorithms. 
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Scientific and Technical Area Coverage
The Wolfram Language provides thousands of built-in functions and packages that cover a broad
range  of  scientific  and  technical  computing  areas,  such  as  statistics,  control  systems,  data
visualization,  and  image  processing.  All  functions  are  carefully  designed  and  tightly  integrated
with the core system.

Unified Data Representation
At the core of the Wolfram Language is the foundational idea that everything—data, programs,
formulas,  graphics,  documents—can  be  represented  as  symbolic  entities,  called  expressions.
This unified representation makes Wolfram Language functions extremely flexible,  streamlined,
and consistent.

Data Access and Connectivity
The  Wolfram  Language  natively  supports  hundreds  of  formats  for  importing  and  exporting,  as
well  as  real-time  access  to  data  from  the  Wolfram  Knowledgebase.  It  also  provides  APIs  for
accessing many programming languages and databases, such as C/C++, Java, .NET, MySQL, and
Oracle.

Full-Featured, Unified Development Environment
Through its unique interface and integrated features for computation, development, and deploy-
ment,  the  Wolfram  Language  provides  a  streamlined  workflow.  Wolfram  Research  also  offers
Wolfram  Workbench,  a  state-of-the-art  integrated  development  engine  based  on  the  Eclipse
platform.

High-Performance Computing
The  Wolfram  Language  has  built-in  support  for  multicore  systems,  utilizing  all  cores  on  the
system  for  optimal  performance.  Many  functions  automatically  utilize  the  power  of  multicore
processors, and built-in parallel constructs make high-performance programming easy.

Platform-Independent Deployment Options
Through its interactive documents, Wolfram CDF Player, browser plugins, and cloud connectivity,
the Wolfram Language provides a wide range of options for deployment. Built-in code generation
functionality can be used to create standalone programs for independent distribution.

Scalability
Wolfram Research’s  gridMathematica  allows  Wolfram Language programs to  be  parallelized  on
many machines in cluster or grid configuration. Also available is webMathematica, which allows
Wolfram Language programs to be run on a web server.
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Motivations for Heterogeneous Computing in the Wolfram 
Language
Over the past few years, multicore systems have transitioned from being found only on specialty

devices  to  commodity  devices.  With  CPUs  routinely  having  2,  4,  or  8  cores,  software  has  not

been able to exploit the now-common multicore features.

The GPU has also transitioned from being used only for graphics and gaming to a device capable

of performing general computation. The GPU has quickly surpassed the CPU in terms of perfor-

mance, with a modest GPU able to perform over 20 times more computations per second than a

CPU.  This  is  because  of  the  GPU  architecture,  which  reduces  cache  and  RAM in  favor  of  arith-

metic logical units (ALU).

Unlike Moore’s law for the CPU—which states that the number of transistors that can be placed

inexpensively on an integrated circuit doubles approximately every 18 months—GPUs have been

quadrupling the number of transistors every 18 months. With an architecture that facilitates the

addition  of  more  ALUs,  the  GPU  has  quickly  surpassed  the  CPU  in  terms  of  raw  computational

power, making the GPU ideal for certain forms of computation.

Yet as algorithms were implemented for the GPU, it became apparent that the lack of cache and

control  makes  some algorithms either  difficult  or  inefficient  on  the  GPU.  Hence the  populariza-

tion of heterogeneous computing, which uses the CPU in cases where the GPU is inefficient and

the GPU where speedups are desired.

By  providing  an  interface  for  running  programs  on  both  the  CPU  and  the  GPU,  the  Wolfram

Language  embodies  the  heterogeneous  computing  philosophy,  allowing  users  to  choose  either

the CPU or GPU based on the program’s performance.

CPU Multicore Integration in the Wolfram Language
Most of the built-in functions, like linear algebra, image processing, and wavelets, already make
use of all cores on the system. The Wolfram Language also provides the user with a few ways to
accelerate programs using multiple cores. Those functions can be further extended to run on a
cluster of machines with the use of gridMathematica as well as be used in conjunction with the
GPU capabilities in the Wolfram Language.
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Compile

The  Wolfram  Language’s  Compile  command  takes  a  sequence  of  inputs  and  expressions  and,

based on the input usage, performs type inferencing to construct a byte code representation  of

the  program.  The  byte  code  can  be  targeted  to  the  Wolfram  Language’s  internal  virtual

machine—Wolfram  Virtual  Machine  (WVM),  or  C.  Compile  is  used  internally  by  many  Wolfram

Language functions and, when it makes sense, some expressions are automatically compiled for

the  user—when  constructing  a  list  using  a  function,  for  example,  the  function  is  automatically

created to speed up the construction.

To use the Compile  command, the user passes in the input variables along with a sequence  of

Wolfram  Language  expressions.  Compile  will  automatically  perform  code  optimization—the

following code, for example, performs common subexpression elimination resulting in evaluating

x2 once:

cf = Compile{x}, Sin[x] + x2 -
1

x2


CompiledFunction{x}, Block{Compile`$2}, Compile`$2 = x2;

Sin[x] + Compile`$2 -
1

Compile`$2
, -CompiledCode-

The CompiledFunction returned behaves the same as any Wolfram Language function. It can be

visualized as follows:

Plot[cf[x], {x, -π, π}]
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The  Compile  statement  generates  byte  code  from  Wolfram  Language  expressions.  The  byte

code can be printed to understand what code is being generated:

Needs["CCodeGenerator`"]

CompilePrint[cf]

1 argument

5 Real registers

Underflow checking off

Overflow checking off

Integer overflow checking on

RuntimeAttributes -> {}

R0 = A1

Result = R2

1 R1 = Square[ R0]

2 R2 = Sin[ R0]

3 R3 = Reciprocal[ R1]

4 R4 = - R3

5 R2 = R2 + R1 + R4

6 Return

The byte code generated can be used to target the Wolfram Virtual Machine (WVM), C, LLVM IR,
CUDA, OpenCL, or JVM with both WVM and C built into the Wolfram Language.

Compilation target

By default,  Compile  targets  the WVM, but  if  CompilationTarget->"C"  is  set,  then Compile  will

generate a C version of  the Wolfram Language program, compile it,  and run it.  This  allows the
Wolfram  Language  to  run  at  the  same  speed  as  C,  without  going  through  low-level  C
programming:

cf = Compile{x}, Sin[x] + x2 -
1

x2
, CompilationTarget → "C"

CompiledFunction{x}, Block{Compile`$3}, Compile`$3 = x2;

Sin[x] + Compile`$3 -
1

Compile`$3
, -CompiledCode-

Since  the  Wolfram  Language  is  highly  expressive,  programs  that  take  dozens  or  hundreds  of
lines  in  C code can be written in  two or  three lines  in  the Wolfram Language and have similar

performance. The following, for example, uses Compile to generate a multi-threaded C program

to compute the Mandelbrot set. The code is executed from within the Wolfram Language:

compileMandelbrot = Compile[{{c, _Complex}},

Boole[Norm[

FixedPoint[#^2 + c &, 0, 1000, SameTest → (Norm[#] ≥ 4 &)]] ≥ 4],

CompilationTarget → "C", RuntimeAttributes → Listable

];
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The following sets the evaluation points for the Mandelbrot function:

evaluationPoints =

Table[a + I b, {b, -1, 1, 0.005}, {a, -1.5, 0.5, 0.005}];

And finally, we invoke the function with the evaluation points and plot the result:

ArrayPlot[compileMandelbrot[evaluationPoints]]

Written  in  C,  the  above  would  have  taken  many  hundreds  of  lines  of  code,  required  project
setup, and might not have been portable across systems.

Automatic vectorization

The  Wolfram  Language  can  automatically  parallelize  Compile  statements.  Making  a  Com

piledFunction  run  in  parallel  is  simple—the user  only  has  to  pass  the  option  RuntimeAt

tributes->"Listable".  From  there,  Compile  will  run  in  as  many  threads  as  there  are  on

the system.

As an example,  we implement a basic ray tracer.  The ray tracer takes a list  of  sphere centers,
sphere radii,  sphere colors,  and a ray origin position.  It  then shines a parallel  ray from the ray
origin, records which sphere intersects the ray, and associates a color with the intersection. We

will  compile  the  code  into  "C"  by  passing  the  CompilationTarget->"C"  option,  as  we  will  use

RuntimeAttributes->"Listable" to make the code run in parallel:

raySpheresIntersectionColor =

Compile{{centers, _Real, 2}, {radii, _Real, 1},
{colors, _Real, 2}, {x, _Real}, {y, _Real}},

Module{ray = {x, y, 0.0}, v, rad, center, res = {0., 0., 0.}},
Do
rad = radii[[ii]]2;
center = centers[[ii]];
v = Norm[ray - center]2;
Ifv < rad,

res = colors[[ii]]
rad - v

rad
;

, {ii, Length[centers]}
;
res

, CompilationTarget → "C", RuntimeAttributes → Listable
;

Here, we define a Wolfram Language function that calls the preceding compiled function:

rayTraceCompile[centers_, radii_, colors_, x_, y_] :=
Module[{ xx, yy},
xx = Transpose[ConstantArray[x, Length[y]]];
yy = ConstantArray[y, Length[x]];
raySpheresIntersectionColor[centers, radii, colors, xx, yy]

]
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This  constructs  the  scene,  generating  100  spheres  in  random  positions  and  creating  the  ray

origins.  We  use  the  Wolfram  Language  symbol  ColorData  to  get  colors  that  follow  the

"DarkBands" color scheme:

width = height = 300;
nx = ny = 300;
numSpheres = 100;

centers = TableRandomReal
-width

2
,
width

2
,

RandomReal
-height

2
,
height

2
, RandomReal[100], {numSpheres};

radii = RandomReal[{5, 30}, numSpheres];
colors = ReplaceAllColorData["DarkBands"] /@

Range0, 1, 1  numSpheres, RGBColor → List;
x = width * N[Range[0, nx]]  nx - .5;
y = height * N[Range[0, ny]]  ny - .5;

This runs the ray tracer and visualizes the result:

imgc = rayTraceCompile[centers, radii, colors, x, y];
Image[imgc]

Again,  the  speed  of  this  program  is  comparable  to  a  program  written  in  C,  but  unlike  the  C
version, our code is around 20 lines long.

Parallel Computing

Built  into  the  Wolfram  Language  is  the  capability  for  multicore  computing.  The  Wolfram
Language’s parallel tools allow users to make use of all cores on their system, developing more
sophisticated  projects  that  execute  at  a  fraction  of  the  time.  The  Wolfram Language’s  parallel
infrastructure is also set up to allow seamless scaling to networks, clusters, and grids.

The most basic parallel program you can write is a Monte Carlo integrator for approximating π
4
.

This  is  done by generating uniform random points in  the [0, 1]×[0, 1]  region.  The proportion  of
points  with  a  norm  less  than  1  approximates  π

4
.  The  following  shows  uniform  points  in  the

[0, 1]×[0, 1]  region,  with  red  points  having  a  norm  less  than  1.  As  can  be  seen,  those  points
cover approximately a quarter of a unit circle:

pts = RandomReal[1, {10000, 2}];
Graphics[
{AbsolutePointSize[2], {Red, Point[Select[pts, Norm[#] ≤ 1 &]]},
{Black, Point[Select[pts, Norm[#] > 1 &]]}}]
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The Wolfram Language has extensive support for list processing. This makes writing the preced-
ing Monte Carlo π approximation trivial:

n = 1000000;
Mean[Table[If[Norm[RandomReal[1, {2}]] ≤ 1, 1.0, 0.0], {n}]]

0.784838

The Wolfram Language has parallel primitives such as ParallelMap and ParallelTable, as well

as Parallelize,  which performs automatic parallelization.  So,  to make the above program run

on multiple cores, the user just has to place Parallelize around Table, and it is automatically

run in parallel:

n = 1000000;
Mean[
Parallelize[
Table[If[Norm[RandomReal[1, {2}]] ≤ 1, 1.0, 0.0], {n}]

]

]

0.784934

Parallel tools allow fine-grained control of how to split the parallel tasks and how many parallel
kernels to run. A queueing mechanism is also available to saturate the CPU usage and achieve
the best speedup.

gridMathematica

gridMathematica extends the Wolfram Language’s parallel functionality to run on homogeneous
and  heterogeneous  networks  and  clusters.  By  installing  the  gridMathematica  server  on  a
machine, the machine will broadcast its availability to the master machine.
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Similar to the Wolfram Language’s parallel tools, gridMathematica allows for fine-grained control
over  the scheduling of  tasks,  giving priority  to  certain  kernels.  gridMathematica also interfaces
with  existing  grid  management  software  from Microsoft,  Sun,  LFS,  PBS,  and  more.  It  also  con-
tains its own management software called Wolfram Lightweight Grid Manager. 

Programs  written  using  the  Wolfram  Language’s  parallel  tools  are  valid  gridMathematica  pro-
grams,  and  thus  the  Wolfram  Language  is  easily  scalable  from  single  multicore  systems  to
clusters.

GPU Integration in the Wolfram Language 
CUDALink  and  OpenCLLink  offer  a  high-level  interface  to  the  GPU  built  on  top  of  the  Wolfram
Language’s  development  technologies.  They  allow  users  to  execute  code  on  their  GPU  with
minimal effort. Because Wolfram has fully integrated and automated the GPU’s capabilities using
the  Wolfram  Language,  hiding  unnecessary  complexity  associated  with  GPU  programming  and
lowering  the  learning  curve  for  GPU  computation,  users  experience  a  more  productive  and
efficient development cycle.

CUDALink and OpenCLLink Support

CUDALink is supported on all CUDA-enabled NVIDIA hardware. OpenCLLink supports both NVIDIA
and AMD GPUs, with only the NVIDIA driver being needed for NVIDIA GPUs. Both the AMD video
driver and AMD APP SDK are needed for AMD. OpenCLLink also supports CPU implementations of
OpenCL provided by either AMD or Intel.

GPUs  that  have  CUDA or  OpenCL support  are  supported  by  CUDALink  or  OpenCLLink,  with  the
Wolfram  Language  automatically  determining  the  precision  of  the  card  and  executing  the
appropriate  function  based  on  the  maximal  floating-point  precision.  CUDALink  and  OpenCLLink
are  supported  on  all  platforms supported  by  the  Wolfram Language—Windows,  Mac  OS X,  and
Linux, both 32 and 64 bit.

Making GPU Programming Easy

By  removing  repetitive  and  low-level  GPU-related  tasks,  the  Wolfram  Language  makes  GPU
programming simple.

Automation of development project management

Unlike  other  development  frameworks  that  require  the  user  to  manage project  setup,  platform
dependencies,  and  device  configuration,  the  Wolfram  Language  makes  the  process  of  GPU
programming transparent and automated.
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Automated GPU memory and thread management

A GPU program written from scratch delegates memory and thread management to the program-
mer. This bookkeeping is required in addition to the need to write the GPU kernel.

With the Wolfram Language, memory and thread management are automatically handled for the
user.  The  Wolfram Language’s  memory  manager  handles  memory  transfers  intelligently  in  the
background. Memory, for example, is not copied to the GPU until computation is needed and is
flushed out when the GPU memory gets full.

As  a  result  of  hiding  the  bookkeeping  and  repetitive  tasks  found  in  GPU  programming,  the
Wolfram  Language  streamlines  the  whole  programming  process,  allowing  for  simpler  code,  a
shorter development cycle, and better performance.

Integration with the Wolfram Language’s built-in capabilities 

The Wolfram Language’s GPU integration provides full access to its built-in functions. Users can
write hybrid algorithms that use the CPU and GPU, depending on the efficiency of each algorithm.

Ready-to-use applications

The Wolfram Language provides several ready-to-use GPU functions that cover a broad range of
topics such as computational mathematics, image processing, financial engineering, and more.
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Zero device configuration

The  Wolfram  Language  automatically  finds,  configures,  and  makes  GPU  devices  available  to
users. The Wolfram Language will automatically detect and configure the required tools to make
it simple to use the GPU.

Through  the  Wolfram Language’s  built-in  parallel  programming  support,  users  can  launch  GPU
programs  on  different  devices.  Users  can  also  scale  the  setup  across  machines  and  networks
using gridMathematica.

Web deployment

The Wolfram Language can be deployed onto a web server using webMathematica. This means
that GPU computation can be initiated from devices that do not have a GPU. This is ideal for the
classroom,  where  the  instructor  may  want  to  control  the  development  environment,  or  mobile
devices, which do not have GPUs.

The Wolfram Language’s CUDALink
CUDALink is  a built-in Wolfram Language application that provides an interface for using CUDA

within  the Wolfram Language.  Through CUDALink,  users  can execute CUDA programs from the

Wolfram  Language  with  little  effort.  Because  the  Wolfram  Language  makes  intelligent  choices

about GPU memory transfer, users experience better execution speed compared with handwrit-

ten CUDA programs.

Setting Up CUDALink

CUDALink supplies a set of tools to query the system’s GPU hardware. To use CUDALink opera-

tions, users have to first load the CUDALink application:

Needs["CUDALink`"]

CUDAQ queries whether the current hardware and system configuration support CUDALink. It will

also install the required libraries from the Wolfram server on first invocation:

CUDAQ[]

True

CUDAInformation gives information on the available CUDA hardware:

CUDAInformation[]

{1 → {Name → NVS 5100M, Clock Rate → 1210000, Compute Capabilities → 1.2, GPU Overlap → 1,
Maximum Block Dimensions → {512, 512, 64}, Maximum Grid Dimensions → {65535, 65535, 1},
Maximum Threads Per Block → 512, Maximum Shared Memory Per Block → 16384,
Total Constant Memory → 65536, Warp Size → 32, Maximum Pitch → 2147483647,
Maximum Registers Per Block → 16384, Texture Alignment → 256, Multiprocessor Count → 6,
Core Count → 48, Execution Timeout → 1, Integrated → False, Can Map Host Memory → True,
Compute Mode → Default, Texture1D Width → 8192, Texture2D Width → 65536,
Texture2D Height → 32768, Texture3D Width → 2048, Texture3D Height → 2048,
Texture3D Depth → 2048, Texture2D Array Width → 8192, Texture2D Array Height → 8192,
Texture2D Array Slices → 512, Surface Alignment → 256, Concurrent Kernels → False,
ECC Enabled → False, TCC Enabled → False, Total Memory → 993460224}}

Heterogeneous Programming with the Wolfram Language | 11



CUDALink Programming

Programming the GPU in the Wolfram Language is straightforward. It begins with writing a CUDA
program. The following CUDA program negates the colors of a multichannel image:

src = "

__global__ void cudaColorNegate(mint

*img, mint *dim, mint channels) {

int width = dim[0], height = dim[1];

int xIndex = threadIdx.x + blockDim.x*blockIdx.x;

int yIndex = threadIdx.y + blockDim.y*blockIdx.y;

int index = channels * (xIndex + yIndex*width);

if (xIndex < width && yIndex < height) {

for (int c = 0; c < channels; c++)

img[index + c] = 255 - img[index + c];

}

}";

The  source  code  is  passed  to  CUDAFunctionLoad and  the  user  gets  a  Wolfram  Language

function as output:

CUDAColorNegate = OpenCLFunctionLoad[src, "cudaColorNegate",

{{_Integer, "InputOutput"},

{_Integer, "Input"}, _Integer}, {16, 16}]

CUDAFunction[<>, cudaColorNegate,

{{_Integer, InputOutput}, {_Integer, Input}, _Integer}]

Now you can apply this new CUDA function to an image:

img = ;

CUDAColorNegate[img, ImageDimensions[img], ImageChannels[img]]

 
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CUDAFunctionLoad  follows  a  simple  syntax  where  the  first  argument  is  the  CUDA  source,  the

second  argument  is  the  function  name  to  be  invoked,  the  third  argument  is  a  list  of  function
parameter types, and the final argument is the workgroup size (block dimension):

Several things need to happen behind the scenes at this stage to load the CUDA code into the
Wolfram Language efficiently.

First, we need to check to see if the arguments to CUDAFunctionLoad are valid. Since this is the

most common source of errors, we have to catch it early. Second, we compile the CUDA function

and  cache  it.  The  output  from  this  step  is  a  CUDAFunction  that  behaves  like  any  Wolfram

Language function.

When a CUDAFunction is invoked, we perform input checking to make sure it matches the input

specification.  We  next  load  the  data  onto  the  GPU  (memory  copies  are  performed  in  a  lazy
fashion to minimize memory copy overhead). We then invoke a synchronization to make sure all
computation has been performed and get the results from the GPU.

CUDALink Applications in the Wolfram Language
In this section we detail some CUDALink applications. CUDALink comes with a dozen or so built-
in  functions  that  do  not  require  the  user  to  know  CUDA  programming.  The  built-in  functions
mirror the Wolfram Language’s functions, so they are easy to learn and use.

Image Processing

CUDALink’s  image  processing  capabilities  can  be  classified  into  three  categories.  The  first  is
convolution,  which  is  optimized  for  CUDA.  The  second  is  morphology,  which  contains  abilities
such as erosion, dilation, opening, and closing. Finally, there are the pixel operators. These are
image multiplication, division, subtraction, and addition.
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CUDALink’s convolution is similar to the Wolfram Language’s ListConvolve and ImageConvolve

functions.  It  will  operate  on  images,  lists,  or  CUDA  memory  references,  and  it  can  use  the
Wolfram Language’s built-in filters as the kernel:

CUDAImageConvolve ,
-1 0 1
-2 0 2
-1 0 1



Convolving a microscopic image with a Sobel mask to detect edges.

CUDALink  supports  pixel  operations  on one or  two images,  such as  adding or  multiplying pixel
values from two images:

CUDAImageMultiply , 

Multiplication of two images.

Finally,  morphology  operations  are  supported.  Here  we  use  the  Manipulate  function,  which

makes creating GUI interfaces simple:

ManipulateCUDAErosion , radius, {radius, 0, 9}

Construction of an interface that performs a morphological operation on an image with varying radii.
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Fast Fourier Transforms and Linear Algebra

Users  can  perform  Fourier  transforms  and  various  linear  algebra  operations  with  CUDALink.

Methods such as matrix-matrix multiplication, matrix-vector multiplication, finding minimum and

maximum elements, and transposing matrices are all accelerated to use the GPU.

Here, we multiply two matrices together:

CUDADot

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

,

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

 // MatrixForm

15 15 15 15 15
30 30 30 30 30
45 45 45 45 45
60 60 60 60 60
75 75 75 75 75

Performing matrix multiplication.

Financial Engineering

CUDALink  has  built-in  financial  options  pricing  capabilities,  which  use  the  analytic  solution,  the

binomial  solution,  or  Monte  Carlo  methods,  depending  on  the  type  of  option  selected.  The

following shows the American put option’s surface plot as the spot price and expiry vary:

ListPlot3D[ParallelMap[CUDAFinancialDerivative[{"American", "Put"},

{"StrikePrice" → 80., "Barriers" → 100, "Expiration" → #},

{"CurrentPrice" → Range[30., 130., 1], "InterestRate" → 0.06,

"Volatility" → 0.45, "Dividend" → 0.02, "Rebate" → 5.}] &,

Range[0.2, 10, 0.2]], DataRange → {{30, 130}, {0.2, 10}},

AxesLabel → {"Stock", "Time", "Option"}]

A three-dimensional plot of the CUDA-evaluated American put. In this case, we utilize parallel programming 

over CPUs in addition to that provided by the GPU.
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Complex Dynamics

CUDALink enables you to easily investigate computationally intensive complex dynamics struc-
tures. We will compute the Julia set, which is a generalization of the Mandelbrot set. The follow-
ing implements the CUDA kernel:

code = "
__global__ void julia_kernel(Real_t * set,

int width, int height, Real_t cx, Real_t cy) {

int xIndex = threadIdx.x + blockIdx.x*blockDim.x;
int yIndex = threadIdx.y + blockIdx.y*blockDim.y;
int ii;

Real_t x = ZOOM_LEVEL*(width/2 - xIndex);
Real_t y = ZOOM_LEVEL*(height/2 - yIndex);
Real_t tmp;
Real_t c;

if (xIndex < width && yIndex < height) {

for (ii = 0; ii <

MAX_ITERATIONS && x*x + y*y < BAILOUT; ii++) {

tmp = x*x - y*y + cx;
y = 2*x*y + cy;
x = tmp;

}

c = log(0.1f + sqrt(x*x + y*y));
set[xIndex + yIndex*width] = c;

}

}";

This loads the CUDAFunction. Notice that the syntax is the same as OpenCLFunctionLoad. While

we did not show macros being used in OpenCLLink, macros are used here to allow the compiler
to further optimize the code:

JuliaCalculate = CUDAFunctionLoad[code, "julia_kernel",
{{_Real, "Output"}, _Integer, _Integer, _Real, _Real},
{16, 16}, "Defines" → {"MAX_ITERATIONS" → 10,

"ZOOM_LEVEL" → "0.0050", "BAILOUT" → "4.0"}];

The width and height are set and the output memory is allocated:

{width, height} = {512, 512};
jset = CUDAMemoryAllocate[Real, {height, width}];

This creates an interface using Manipulate  and ReliefPlot  where you can adjust the value  of

the constant c interactively:

Manipulate[
JuliaCalculate[jset, width,
height, c[[1]], c[[2]], {width, height}];

ReliefPlot[Reverse@CUDAMemoryGet[jset], ColorFunction → "Rainbow",
DataRange → {{-2.0, 2.0}, {-2.0, 2.0}}, ImageSize → 512,
Frame → None, Epilog → {Opacity[.5], Dashed, Thick, Line[

{{{c[[1]], -2}, {c[[1]], 2}}, {{-2, c[[2]]}, {2, c[[2]]}}}]}],
{{c, {0, 1}}, {-2, -2}, {2, 2}, Locator, Appearance →

Graphics[{Thick, Dashed, Opacity[.75], Circle[]}, ImageSize → 50]}]
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Interactive computation and rendering of a Julia set.

Brownian Motion

Brownian motion is a very important concept in many scientific fields. It is used in computational
chemistry,  physics,  and  finance.  In  the  following  code,  we  use  the  CURAND  kernel  library  to
generate random numbers for computing sample paths of Brownian motion:

code = "
#include \"curand_kernel.h\"
extern \"C\" __global__ void

brownianMotion(Real_t *out, mint pathLen, mint pathN) {

curandState rngState;
Real_t sum = 0;
int index = threadIdx.x + blockIdx.x*blockDim.x;
curand_init(1234, index, 0, &rngState);
if (index < pathN) {

out[index] = sum;
for (int ii = 1; ii < pathLen; ii++) {

sum += curand_normal(&rngState);
out[ii*pathN + index] = sum;

}

}

}";

The following loads the preceding CUDA code into the Wolfram Language:

cudaBM = CUDAFunctionLoad[code, "brownianMotion",
{{_Real, "Output"}, _Integer, _Integer},
64, "UnmangleCode" → False];

The following sets the function parameters. We use a low path length and path number to make
it easy to see the motion path:

pathLen = 1024;
pathN = 16;
out = ConstantArray[0, {pathLen, pathN}];
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The following visualizes the result:

res = Transpose[First[cudaBM[out, pathLen, pathN, pathN]]];

ListLinePlot[res]

200 400 600 800 1000

-50

50

The possibilities are open for more complicated and broader applications of the GPU capabilities
in the Wolfram Language. And with little effort, programs can be written so that they execute on
either the CPU or GPU, depending on the detected hardware.

The Wolfram Language’s OpenCLLink
In addition to CUDA support, the Wolfram Language provides OpenCL support. By providing the
same usage  syntax  as  CUDALink,  the  Wolfram Language  is  unique  in  enabling  easy  porting  of
CUDA  applications  to  OpenCL  and  vice  versa.  In  this  section,  we  show  how  to  load  OpenCL
programs into the Wolfram Language.

Setting Up OpenCLLink
OpenCLLink  supplies  functions  that  query  the  system’s  GPU  hardware.  To  use  OpenCLLink
operations, users have to first load the OpenCLLink application:

Needs["OpenCLLink`"]

OpenCLQ tells whether the current hardware and system configuration support OpenCLLink:

OpenCLQ[]

True

OpenCLInformation  gives  information  on  the  available  OpenCL  hardware.  Here,  we  query

information about the first platform and device installed on the system:

OpenCLInformation[1, 1]
{"Type" → "GPU", "Name" → "Tesla C2050 / C2070", "Version" → "OpenCL 1.0 CUDA",
"Extensions" → {"cl_khr_byte_addressable_store", "cl_khr_icd", "cl_khr_gl_sharing",

"cl_nv_d3d9_sharing", "cl_nv_d3d10_sharing", "cl_khr_d3d10_sharing", "cl_nv_d3d11_sharing",
"cl_nv_compiler_options", "cl_nv_device_attribute_query", "cl_nv_pragma_unroll",
"cl_khr_global_int32_base_atomics", "cl_khr_global_int32_extended_atomics",
"cl_khr_local_int32_base_atomics", "cl_khr_local_int32_extended_atomics", "cl_khr_fp64"},

"Driver Version" → "270.81", "Vendor" → "NVIDIA Corporation", "Profile" → "FULL_PROFILE",
"Vendor ID" → 4318, "Compute Units" → 14, "Core Count" → 448,
"Maximum Work Item Dimensions" → 3, "Maximum Work Item Sizes" → {1024, 1024, 64},
"Maximum Work Group Size" → 1024, "Preferred Vector Width Character" → 1,
"Preferred Vector Width Short" → 1, "Preferred Vector Width Integer" → 1,
"Preferred Vector Width Long" → 1, "Preferred Vector Width Float" → 1,
"Preferred Vector Width Double" → 1, "Maximum Clock Frequency" → 1147,
"Address Bits" → 32, "Maximum Memory Allocation Size" → 695 091200, "Image Support" → True,
"Maximum Read Image Arguments" → 128, "Maximum Write Image Arguments" → 8,
"Maximum Image2D Width" → 4096, "Maximum Image2D Height" → 32768,
"Maximum Image3D Width" → 2048, "Maximum Image3D Height" → 2048,
"Maximum Image3D Depth" → 2048, "Maximum Samplers" → 16, "Maximum Parameter Size" → 4352,
"Memory Base Address Align" → 4096, "Memory Data Type Align Size" → 128,
"Floating Point Precision Configuration" → {"Denorms", "Infinity", "NaNs",

"Round to Nearest", "Round to Infinity", "Round to Zero", "IEEE754-2008 Fused MAD"},
"Global Memory Cache Type" → "Read Write", "Global Memory Cache Line Size" → 128,
"Global Memory Cache Size" → 229376, "Global Memory Size" → 2780364800,
"Maximum Constant Buffer Size" → 65536, "Maximum Constant Arguments" → 9,
"Local Memory Type" → "Local", "Local Memory Size" → 49152, "Error Correction Support" → True,
"Profiling Timer Resolution" → 1000, "Endian Little" → True, "Available" → True,
"Compiler Available" → True, "Execution Capabilities" → {"Kernel Execution"},
"Command Queue Properties" → {"Out of Order Execution", "Profiling Enabled"}}

Example of a report generated by OpenCLInformation.
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OpenCLLink Programming

Programming  the  GPU  in  the  Wolfram  Language  using  OpenCL  is  as  straightforward  as  CUDA.
Here is the OpenCL source code for the same color negate operation:

src = "

__kernel void openclColorNegate(__global

mint *img, __global mint *dim, mint channels) {

int width = dim[0], height = dim[1];

int xIndex = get_global_id(0), yIndex = get_global_id(1);

int index = channels * (xIndex + yIndex*width);

if (xIndex < width && yIndex < height) {

for (int c = 0; c < channels; c++)

img[index + c] = 255 - img[index + c];

}

}";

As  with  CUDALink,  the  source  code  is  passed  to  OpenCLFunctionLoad,  and  the  user  gets  a

Wolfram Language function as output:

OpenCLColorNegate = OpenCLFunctionLoad[src, "openclColorNegate",

{{_Integer, "InputOutput"},

{_Integer, "Input"}, _Integer}, {16, 16}]

OpenCLFunction[<>, openclColorNegate,

{{_Integer, InputOutput}, {_Integer, Input}, _Integer}]

Now the function can be used:

img = ;

OpenCLColorNegate[img, ImageDimensions[img], ImageChannels[img]]

 
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CUDAFunctionLoad  follows  the  same  syntax  as  CUDALink,  where  the  first  argument  is  the

OpenCL source, the second argument is the function name to be invoked, the third argument is
a  list  of  function  parameter  types,  and  the  final  argument  is  the  workgroup  size  (block
dimension):

As  with  CUDALink,  behind-the-scenes  processing  needs  to  be  performed  to  make  sure  that
invocation of the function is efficient.

OpenCLLink Applications in the Wolfram Language
In  this  section  we  discuss  some  applications  that  run  on  the  GPU  using  OpenCLLink.  In  the
Wolfram Language you can perform sophisticated heterogeneous computation easily by leverag-
ing a variety of built-in features.

Black–Scholes Equation

The Black–Scholes equation is the basis of computational finance. It states that a European call
option can be modeled by a formula implemented by the following OpenCL program:

code = "

#ifdef USING_DOUBLE_PRECISIONQ

#ifdef OPENCLLINK_USING_NVIDIA

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

#else /* OPENCLLINK_USING_NVIDIA */

#pragma OPENCL EXTENSION cl_amd_fp64 : enable

#endif /* OPENCLLINK_USING_NVIDIA */

#endif /* USING_DOUBLE_PRECISIONQ */

#define N(x) (erf((x)/sqrt(2.0))/2+0.5)

__kernel void blackScholes(__global Real_t *

call, __global Real_t * S, __global Real_t * X,

__global Real_t * T, __global Real_t * R, __global

Real_t * Q, __global Real_t * V, mint length) {

int ii = get_global_id(0);

if (ii < length) {

Real_t d1 =

(log(S[ii]/X[ii])+(R[ii]-Q[ii]+(pow(V[ii],(Real_t)2.0)/2)*T[

ii]))/(V[ii]*sqrt(T[ii]));

Real_t d2 = d1 - V[ii]*sqrt(T[ii]);

call[ii] = S[ii]*exp(-Q[ii]*T[ii])*N(d1)

- X[ii]*exp(-R[ii]*T[ii])*N(d2);

}

}";
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Real_t  is  a  type  defined  by  the  Wolfram  Language  that  maps  to  the  highest  precision  of  the

OpenCL device. This ensures that users are getting the best accuracy when computing.

The following loads the preceding OpenCL code into the Wolfram Language:

OpenCLBlackScholes =

OpenCLFunctionLoad[code, "blackScholes", {{_Real}, {_Real, "Input"},

{_Real, "Input"}, {_Real, "Input"}, {_Real, "Input"},

{_Real, "Input"}, {_Real, "Input"}, _Integer}, 128]

OpenCLFunction[<>, blackScholes,

{{_Real}, {_Real, Input}, {_Real, Input}, {_Real, Input},

{_Real, Input}, {_Real, Input}, {_Real, Input}, _Integer}]

This gets the stock price for the S&P 500 from the beginning of 2010 to April 2011. This data is
curated by Wolfram Research and accessible via a web connection:

data = Transpose[FinancialData["SP500", {{2010, 0, 0}, {2011, 4, 0}}]];

This uses the S&P 500 data for the spot price and the dates for the expiration values. The rest of
the data is randomly generated:

Needs["Calendar`"]

numberOfOptions = Length[data[[1]]];

call = ConstantArray[0.0, numberOfOptions];

S = data[[2]];

X = 1.1 * data[[2]];

T = DaysBetween[#, {2011, 4, 20}] & /@ data[[1]]  365.;

R = RandomReal[{0.03, 0.07}, numberOfOptions];

Q = RandomReal[{0.01, 0.04}, numberOfOptions];

V = RandomReal[{0.10, 0.50}, numberOfOptions];

The following runs the computation on the OpenCL device:

res = OpenCLBlackScholes[call, S, X, T, R, Q, V, numberOfOptions];

We  visualize  the  result  as  a  Kagi  chart.  This  visualization  function  is  part  of  the  Wolfram  Lan-
guage’s comprehensive support for visualization and charting, which includes plotting surfaces,
computing bar and pie charts, and interacting with trading charts:

KagiChart[Transpose[{data[[1]], res[[1]]}]]
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Computing with Data from an Excel File

The  Wolfram  Language  supports  many  import  and  export  formats.  One  such  format  is  Excel
(XLS), which we use in this example as the source for our data when calculating the one-touch
option:

code = "

#define N(x) (erf((x)/sqrt(2.0))/2+0.5)

__kernel void onetouch(__global Real_t * call, __global

Real_t * put, __global Real_t * S, __global Real_t *

X, __global Real_t * T, __global Real_t * R, __global

Real_t * D, __global Real_t * V, mint length) {

Real_t tmp, d1, d5, power;

int ii = get_global_id(0);

if (ii < length) {

d1 = (log(S[ii]/X[ii]) + (R[ii] - D[ii] + 0.5f

* V[ii] * V[ii]) * T[ii]) / (V[ii] * sqrt(T[ii]));

d5 = (log(S[ii]/X[ii]) - (R[ii] - D[ii] + 0.5f *

V[ii] * V[ii]) * T[ii]) / (V[ii] * sqrt(T[ii]));

power = pow(X[ii]/S[ii], 2*R[ii]/(V[ii]*V[ii]));

call[ii] = S[ii] < X[ii]

? power * N(d5) + (S[ii]/X[ii])*N(d1) : 1.0;

put[ii] = S[ii] > X [ii] ? power * N(-d5)

+ (S[ii]/X[ii])*N(-d1) : 1.0;

}

}";

This loads the OpenCL function into the Wolfram Language in single-precision mode:

OpenCLOneTouchOption =

OpenCLFunctionLoad[code, "onetouch", {{_Real, "Output"},

{_Real, "Output"}, {_Real, "Input"}, {_Real, "Input"},

{_Real, "Input"}, {_Real, "Input"}, {_Real, "Input"},

{_Real, "Input"}, _Integer}, 128, "TargetPrecision" → "Single"];

This imports the data from an Excel file and stores it in a Wolfram Language table:

rawData = First[Import["dataset.xlsx", "Data"]];

Do[data[First[row]] = Drop[row, 1], {row, Transpose[rawData]}];

numberOfOptions = Length[data["Spot Price"]];

This allocates memory for both the call and put results. We allocate the data as single-precision
float:

call = OpenCLMemoryAllocate["Float", numberOfOptions];

put = OpenCLMemoryAllocate["Float", numberOfOptions];

This calls the function:

OpenCLOneTouchOption[call, put, data["Spot Price"],

data["Strike Price"], data["Expiration"], data["Interest"],

data["Dividend"], data["Volatility"], numberOfOptions]

{OpenCLMemory[<29650>, Float], OpenCLMemory[<29636>, Float]}
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This retrieves the result for the call option:

OpenCLMemoryGet[call]

{1., 1., 0.93962, 1.63052, 0.895195, 1., 1., 1., 1., 0.940062, 0.719849,

0.844359, 0.95156, 1., 1., 1., 0.933998, 1., 1.00517, 1., 0.113093,

0.34359, 1., 1., 1., 1., 1., 0.865092, 0.913892, 6.13967, 1., 1.38213,

1., 0.939484, 1., 1., 1., 1.0914, 1., 1.0485, 0.889275, 0.991108,

0.35102, 0.689786, 1., 1., 1., 1., 0.982171, 3.07142, 1., 1.,

0.999357, 0.850779, 1., 2.53988, 1., 1., 1., 1., 1., 0.852829, 1., 1.}

Conway’s Game of Life

Conway’s  Game  of  Life  is  an  example  of  a  simple  two-dimensional  cellular  automaton.  From
simple rules that look only at the eight neighbors, it gives rise to complicated patterns. Here is a
basic OpenCL program that implements the Game of Life:

src = "

__kernel void gol_kernel(__global mint * prev,

__global mint * nxt, mint width, mint height) {

int xIndex = get_global_id(0), yIndex = get_global_id(1);

int index = xIndex + yIndex*width;

int ii, jj, curr, neighbrs;

if (xIndex < width && yIndex < height) {

curr = prev[index];

for (ii = -1, neighbrs = -curr; ii <= 1; ii++) {

if (xIndex + ii >= 0 && xIndex+ii < width) {

for (jj = -1; jj <= 1; jj++) {

if (yIndex+jj >= 0 && yIndex+jj < height)

neighbrs += prev[xIndex + ii + (yIndex+jj)*width];

}

}

}

if (curr == 1)

nxt[index] = (neighbrs == 2 || neighbrs == 3) ? 1 : 0;

else

nxt[index] = (neighbrs == 3) ? 1 : 0;

}

}";

This loads the function using OpenCLFunctionLoad. We set the workgroup size to 16×16:

OpenCLGameOfLife =

OpenCLFunctionLoad[src, "gol_kernel", {{_Integer, "Input"},

{_Integer, "Output"}, _Integer, _Integer}, {16, 16}]

OpenCLFunction[<>, gol_kernel,

{{_Integer, Input}, {_Integer, Output}, _Integer, _Integer}]
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We set the initial  state using random choice,  setting 70% of  the 512×512 initial  states to zero,
while the rest are set to 1. We set the output state to all zeros:

initialState = RandomChoice[{0.7, 0.3} → {0, 1}, {512, 512}];

outputState = ConstantArray[0, {512, 512}];

This uses Dynamic to animate the result at 60 frames per second:

Dynamic

Refresh

initialState =

First[OpenCLGameOfLife[initialState, outputState, 512, 512]];

ArrayPlot[initialState, ImageSize → Medium],

UpdateInterval → 1  60





Many-Body Physical Systems

The N-body simulation is a classic Newtonian problem. The OpenCL implementation is  included
as part of the Wolfram Language distribution:

srcf = FileNameJoin[{$OpenCLLinkPath, "SupportFiles", "NBody.cl"}];

This  loads  OpenCLFunction.  Note  that  you can pass  the  vector  type "float4"  into  the  OpenCL

program, and the Wolfram Language handles the conversion:

NBody = OpenCLFunctionLoad[{srcf}, "nbody_sim",

{{"Float[4]", "Input"}, {"Float[4]", "Input"},

_Integer, "Float", "Float", {"Local", "Float"},

{"Float[4]", "Output"}, {"Float[4]", "Output"}}, 256]

OpenCLFunction[<>, nbody_sim,

{{Float[4], _, Input}, {Float[4], _, Input}, _Integer, Float, Float,

{Local, Float}, {Float[4], _, Output}, {Float[4], _, Output}}]

The number of particles, time step, and epsilon distance are chosen:

numParticles = 1024;

deltaT = 0.05;

epsSqrt = 50.0;
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This sets the input and output memories:

pos =

OpenCLMemoryLoad[RandomReal[512, {numParticles, 4}], "Float[4]"];

vel = OpenCLMemoryLoad[RandomReal[1, {numParticles, 4}], "Float[4]"];

newPos = OpenCLMemoryAllocate["Float[4]", {numParticles, 4}];

newVel = OpenCLMemoryAllocate["Float[4]", {numParticles, 4}];

This calls the NBody function:

NBody[pos, vel, numParticles,

deltaT, epsSqrt, 256 * 4, newPos, newVel, 1024];

NBody[newPos, newVel, numParticles, deltaT,

epsSqrt, 256 * 4, pos, vel, 1024];

This plots the body points:

Graphics3D[Point[Take[#, 3] & /@ OpenCLMemoryGet[pos]]]

This animates the result using Dynamic:

Graphics3D[Point[

Dynamic[Refresh[

NBody[pos, vel, numParticles,

deltaT, epsSqrt, 256 * 4, newPos, newVel, 1024];

NBody[newPos, newVel, numParticles, deltaT,

epsSqrt, 256 * 4, pos, vel, 1024];

Take[#, 3] & /@ OpenCLMemoryGet[pos], UpdateInterval → 0]]]]

Real-time animation of the N-body simulation.
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OpenCL on the Web with webMathematica

Wolfram Research  also  offers  webMathematica,  which  allows  you  to  deploy  Wolfram Language
programs on the web by embedding them in JavaServer Pages (JSP). This allows heterogeneous
computation to be performed on the server from within a client’s web browser.

There  are  many  possible  applications  for  this.  The  preceding  shows  a  teaching  module  devel-
oped to enable students to program an OpenCL kernel without being exposed to either Wolfram
Language  syntax  or  host-side  programming.  When  a  user  clicks  Submit,  the  OpenCL  kernel  is

compiled,  an OpenCLFunction  is  generated,  and the function is  applied to an image.  The com-

puted image is then displayed on the screen for the user.

Aside  from  the  academic  applications,  in  some  cases  it  is  desirable  to  have  a  powerful  work-
station where users can invoke OpenCL computation from within the browser or mobile devices—
invoking a  financial  computation  using  the  latest  stock  data  from a  smart  phone,  for  example.
webMathematica is a solution for such scenarios.
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The Wolfram Language Advantage
If you were to combine the performance computing aspects in  the Wolfram Language with the
following  Wolfram  Language  features,  you  could  develop  nontrivial  heterogeneous  programs
intuitively.

Free-Form Linguistic Input 

The  Wolfram  Language  is  unique  in  providing  an  avenue  for  users  to  write  programs  in  plain
English.  The  Wolfram  Language  uses  Wolfram|Alpha  to  interpret  the  result,  showing  both  the
Wolfram Language input code and the corresponding output:

plot of sin x y

3D plot

Plot3D[y * Sin[x], {x, -6.3, 6.3}, {y, -1, 1}]



Simple Interface Creation

The Wolfram Language makes it simple to create interactive user interfaces. The interfaces can
be  used  to  experiment  with  parameter  values  or  as  teaching  modules,  or  deployed  using  the
Computable Document Format.

The following creates an interface that allows users to adjust the radius and threshold parame-
ters for the Canny edge detector:

ManipulateEdgeDetect , r, t,

{{r, 2, "radius"}, 1, 10}, {{t, .1, "threshold"}, 0, .5}
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Broad Field Coverage

By  using  both  the  CPU  and  the  GPU  and  making  them  available  to  the  user,  the  Wolfram
Language  embodies  the  heterogeneous  message.  Users  have  written  code  that  uses  both  the
CPU  and  GPU  concurrently  on  multiple  machines  to  solve  tasks  in  computer  vision,  medical
imaging, mathematics, and physics.

Since  the  Wolfram Language  has  broad  field  coverage,  a  reference  implementation  is  likely  to
exist. This makes benchmarking and testing simple. This, for example, finds all lines in an input
image:

img = ;

lines = ImageLines[EdgeDetect[img], .28, .06];

Show[img, Graphics[{Thick, Red, Line /@ lines}]]

Here is another example that computes the discrete wavelet transform of an image:

dwd = DiscreteWaveletTransform , Automatic, 2;

We can plot the wavelet decomposition as an image pyramid:

WaveletImagePlot[dwd]
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Import/Export

The Wolfram Language has extensive support for importing and exporting data from hundreds of
formats.  These  formats  include  PNG  and  JPEG  for  images,  LaTeX  and  EPS  for  typesetting,  and
XLS and CSV for spreadsheet data.

For  example,  the  following  imports  the  dataset  from a  GRIB  file.  This  file  format  is  common in
meteorology to store historical and forecast weather data:

data = Import["ExampleData/temperature.grb",

{"Datasets", "Temperature", 1}];

This renders the dataset as an image:

Colorize[ImageAdjust[Image[Reverse[data]]],

ColorFunction → "ThermometerColors"]

C Code Generation

The Wolfram Language has  the  ability  to  export  expressions  written  using  Compile  to  a  C  file.

The  C  file  can  then  be  compiled  and  either  run  as  a  Wolfram  Language  command  (for  native
speed) or integrated with an external application using the Wolfram Runtime Library.

LibraryLink

LibraryLink allows you to load C functions as Wolfram Language functions. It is similar in purpose
to  WSTP  (Wolfram  Symbolic  Transfer  Protocol),  but  by  running  in  the  same  process  as  the
Wolfram System kernel, it avoids the memory transfer cost associated with WSTP. This loads a C
function from a library; the function adds one to a given integer:

addOne = LibraryFunctionLoad["demo", "demo_I_I", {Integer}, Integer]

LibraryFunction[<>, demo_I_I, {Integer}, Integer]

The library function is run with the same syntax as any other function:

addOne[3]

4

CUDALink  and  OpenCLLink  are  written  using  LibraryLink  and  thus  are  prime  examples  of
LibraryLink’s capabilities.
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Symbolic C Code

Using the Wolfram Language’s symbolic capabilities, users can generate C programs within the
Wolfram  Language.  The  example  presented  here  creates  macros  for  common  math  constants
and  manipulates  the  expression  to  convert  the  macros  to  constant  declarations.  To  use  the
Wolfram  Language’s  symbolic  C  code  generation  capabilities,  you  first  need  to  import  the
SymbolicC package:

Needs["SymbolicC`"]

This  gets  all  constants  in  the  Wolfram  Language  context  and  uses  SymbolicC’s  CDefine  to

declare a C macro:

s = Map[CDefine[ToString[#], N[#]] &, Map[ToExpression,

Select[Names["System`*"], MemberQ[Attributes[#], Constant] &]]]

{CDefine[Catalan, 0.915966],

CDefine[Degree, 0.0174533], CDefine[E, 2.71828],

CDefine[EulerGamma, 0.577216], CDefine[Glaisher, 1.28243],

CDefine[GoldenRatio, 1.61803], CDefine[Khinchin, 2.68545],

CDefine[MachinePrecision, 15.9546], CDefine[Pi, 3.14159]}

The symbolic expression can be converted to a C string using the ToCCodeString function:

ToCCodeString[s]

#define Catalan 0.915965594177219

#define Degree 0.017453292519943295

#define E 2.718281828459045

#define EulerGamma 0.5772156649015329

#define Glaisher 1.2824271291006226

#define GoldenRatio 1.618033988749895

#define Khinchin 2.6854520010653062

#define MachinePrecision 15.954589770191003

#define Pi 3.141592653589793

By  representing  the  C  program  symbolically,  users  can  manipulate  it  using  standard  Wolfram
Language techniques. Here, we convert all the macros to constant values:

s = ReplaceAll[s, CDefine[name_, val_] →

CDeclare[{"const", "double"}, CAssign[name, val]]]

{CDeclare[{const, double}, CAssign[Catalan, 0.915966]],

CDeclare[{const, double}, CAssign[Degree, 0.0174533]],

CDeclare[{const, double}, CAssign[E, 2.71828]],

CDeclare[{const, double}, CAssign[EulerGamma, 0.577216]],

CDeclare[{const, double}, CAssign[Glaisher, 1.28243]],

CDeclare[{const, double}, CAssign[GoldenRatio, 1.61803]],

CDeclare[{const, double}, CAssign[Khinchin, 2.68545]],

CDeclare[{const, double}, CAssign[MachinePrecision, 15.9546]],

CDeclare[{const, double}, CAssign[Pi, 3.14159]]}
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Again, the code can be converted to a C string using ToCCodeString:

ToCCodeString[s]

const double Catalan = 0.915965594177219;

const double Degree = 0.017453292519943295;

const double E = 2.718281828459045;

const double EulerGamma = 0.5772156649015329;

const double Glaisher = 1.2824271291006226;

const double GoldenRatio = 1.618033988749895;

const double Khinchin = 2.6854520010653062;

const double MachinePrecision = 15.954589770191003;

const double Pi = 3.141592653589793;

Using  the  Wolfram  Language’s  symbolic  code  generation  tools,  you  can  easily  write  domain-
specific languages that facilitate meta-programming—programs that write other programs.

Scalability

The  Wolfram  Language  programs  everything  from  low-end  netbooks  to  high-end  workstations
and clusters. Through our support of all GPU cards and automatic floating-point precision detec-
tion, the Wolfram Language facilitates scalable GPU programming.

Multi-GPU  programming,  for  example,  is  as  simple  as  wrapping  Parallelize  around  a  GPU

function.  The  following  performs  an  image  morphological  operation  on  the  GPU  using  all  four
GPU cards installed on a system:

GraphicsGridPartitionParallelize

TableCUDAErosion[img, 5, "Device" → $KernelID], img,

FlattenPermutations , , , , 2,

8

Wolfram  Research  has  many  technological  offerings  that  make  scaling  upward  and  downward
possible. Wolfram’s licensing is also adaptive, allowing users to choose the most convenient and
cost-effective plan for their needs.
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Summary
The  Wolfram  Language  provides  several  key  built-in  technologies  that  allow  for  easy
transitioning to using heterogeneous-based computing. As proof of the simplicity, in the past few
pages we wrote a dozen heterogeneous programs in diverse fields that would have been difficult
to do in any other system.

The Wolfram Language’s advantage lies in being able to provide all these features built into the
product,  having them be portable across operating systems, providing an intuitive interface for
their  use  through  careful  functionality  design,  and  making  them scalable  to  low-end  and  high-
end systems.

Pricing and Licensing Information
Wolfram Research offers  many flexible  licensing options for  both organizations and individuals.
You  can  choose  a  convenient,  cost-effective  plan  for  your  workgroup,  department,  directorate,
university, or just yourself, including network licensing for groups.
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www.wolfram.com/mathematica/how-to-buy
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